首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
邱丽氚 《西北植物学报》2004,24(8):1520-1522
通过对大螺旋藻的6种营养成分进行分析表明,大螺旋藻含有61%~66%蛋白质,4.5%~4.7%核酸,6%~8%碳水化合物,4%~5%粗纤维,1%~2%粗脂肪和13~14mg/100g维生素C,这些成分与极大螺旋藻及钝顶螺旋藻的成分很相似。因此大螺旋藻与钝顶螺旋藻、极大螺旋藻同样可被开发利用。  相似文献   

2.
葡萄糖和乳糖对钝顶螺旋藻生长和色素含量的影响   总被引:3,自引:0,他引:3  
葡萄糖和乳糖能促进钝顶螺旋藻生物量的增加,降低叶绿素a和类胡萝卜素含量,但对藻胆蛋白含量的影响不显著。比较而言,乳糖更有利于钝顶螺旋藻混养生物量的提高。  相似文献   

3.
本文研究了实验室条件下增强的uv-B(280-320nm)胁迫对一种蓝藻一钝顶螺旋藻(Spirulina platensis)794生物量、色素和蛋白、细胞内MDA含量及活性氧产生的影响。结果表明,在增强的uV-B胁迫下,螺旋藻的生物量减少,细胞内叶绿素a和类胡萝卜素含量降低,从而使螺旋藻的生长发育受到一定程度的抑制,而细胞浆蛋白质含量增加,这可能是螺旋藻对逆境胁迫的一种适应性反应。增强UV-B胁迫下,螺旋藻细胞内MDA含量增加,与之相对应,活性氧的产生速率也增加,进一步证实了逆境胁迫下,植物细胞内叶绿素含量的下降、MDA的积累主要与UV-B胁迫下活性氧的产生及其对细胞的氧化损伤有关。  相似文献   

4.
通过研究螺旋藻(Spirulina sp.)在砷离子胁迫下的蛋白质组变化,从蛋白质表达水平解释螺旋藻对砷离子胁迫的响应机理。螺旋藻经过不同浓度砷离子胁迫7 d后,提取蛋白质进行凝胶电泳,并对差异蛋白进行质谱分析。结果表明螺旋藻在2.0 ppm砷酸盐中暴露10 min光合放氧速率降低27.3%,培养24 h后细胞内的金属硫蛋白、叶绿素、类胡萝卜素及藻胆蛋白相对含量均明显降低。蛋白组学共鉴定出75个差异蛋白,其中26个显著上调,49个呈现下调。这些差异蛋白表明砷离子主要通过破坏螺旋藻光合色素蛋白,干扰电子传递过程,导致能量合成受损,使得依赖光合作用产生能量进行的跨膜运动、蛋白质合成等相关过程受到影响;同时,活性氧清除与防御相关蛋白呈现上调,螺旋藻细胞内抗氧化系统被激活。  相似文献   

5.
不同光质对钝顶螺旋藻生长和放氧放氢活性的影响   总被引:9,自引:0,他引:9  
红光下培养的螺旋藻生长快,于物质积累多,叶绿素含量和藻胆蛋白含量较高;绿光下培养的藻蛋白质含量及放氢活性高;蓝光下培养的藻的放氧活性最高。  相似文献   

6.
本实验以螺旋藻为材料,通过i TRAQ对螺旋藻细胞在高温胁迫下的全蛋白进行定量分析。结果表明:40oC是螺旋藻可恢复的最大耐受胁迫温度,并在此温度胁迫条件下启动响应机制。差异表达蛋白的筛选结果确定了18 523个独特的肽和2 085个蛋白质,此外,在Uni Prot KB/Swiss-Prot数据库中注释了142种独特的蛋白质。GO功能注释中,共有207条蛋白序列被793条GO功能条目注释,平均GO层次为6.545。KEGG通路注释中,检测到呈现显著差异性表达的注释蛋白117个,涉及光合作用、能量代谢、RNA的转录和翻译等方面。荧光定量PCR结果显示,测序结果与i TRAQ实验相一致,光合系统I P700叶绿素脱辅基蛋白A1、果糖1,6-二磷酸酶、核酮糖二磷酸羧化酶大侧链、光合系统I反应中心亚基XI下调;顺反异构酶、热激蛋白70、热激蛋白90、磷酸甘油酸激酶、二磷酸核苷酸激酶上调。由此可知,螺旋藻经高温胁迫后,与光合作用和遗传信息相关的蛋白是影响螺旋藻热应激的关键。  相似文献   

7.
一、螺旋藻富含矿物质、维生素、蛋白质、必需氨基酸和必需脂肪酸,特别是α-亚麻酸。也是β-胡萝卜素的良好来源。螺旋藻中的铁特别容易被人体吸收。最近的研究证明,螺旋藻可有效地改善免疫功能,降低血清中的胆固醇水平,改善肝功能。经常食用螺旋藻还可增加胃肠道中的有益细菌。二、小球藻富含叶绿素、蛋白质和矿物质(包括磷、钾、镁、硫、铁、钙、铜、锌、碘、钻和其他微量元素、。还含有卜胡萝卜素,以及维生素C、E、K、B1、B2、B6、和B12,烟酸,泛酸,叶酸,生物素,胆碱和肌醇。营养价值很高。可调节胆固醇,有强烈的抗肿瘤和…  相似文献   

8.
平板式光生物反应器培养液混合强度对螺旋藻生长的影响   总被引:2,自引:0,他引:2  
目的:探讨平板式光生物反应器内培养液混合对螺旋藻生长的影响规律。方法:在平板式光生物反应器中进行钝顶螺旋藻(Spirulina platensis)户内和户外培养,通过改变通入反应器内气体的流量来控制培养液的混合强度,测定藻细胞的面积产量和叶绿素含量。结果:在一定的混合强度范围内,藻细胞的面积产量随着混合强度的增加而增加;室内培养时,混合强度的改变不会影响藻细胞的光合反应特性,户外高密度培养时,培养液混合强度的改变会造成藻细胞光合反应特性的变化。结论:强化培养液的混合可以提高螺旋藻产量。  相似文献   

9.
蓝藻—螺旋藻(Spirulina)作为大规模工业化培养的对象,以其高的蛋白质含量和合理的氨基酸组成,极大地吸引了国内外生物学工作者的注意,他们对原产于非洲的钝顶螺旋藻(S.platensis)或墨西哥的极大螺旋藻(S.maxima)进行了广泛的研究3-6。笔者在我国广州珠江河畔一个小池塘里发现采集了一种螺旋藻——大螺旋藻(Spirulina major)1,2,进行了分离和单种培养。    相似文献   

10.
倍频Nd:YAG激光对钝顶螺旋藻的诱变效应   总被引:4,自引:3,他引:1  
利用倍频 Nd:YAG激光 (波长 53 2 nm,功率 50 0 m W,功率密度 1 60 m W/cm2 )诱变钝顶螺旋藻 ,辐照时间为 1 5min、1 0 min、5min通过测定藻丝形态参数、叶绿素 a、β 胡萝卜素、生长速度 ,比较倍频 Nd:YAG激光对钝顶螺旋藻生长的影响。实验结果表明 :与出发株相比 ,经倍频 Nd:YAG激光辐照后 ,藻丝形态发生变化 ,藻丝长、螺旋数、螺旋长变小 ;1 5min,1 0 min辐照组出现螺旋变松驰 ;1 0 min,5min辐照组促进藻的生长和叶绿素 a含量提高 ,使生长速度提高。三个诱变时间剂量都有利于 β 胡萝卡素积累 ,含量增幅最高达 2 2 .3 %。  相似文献   

11.
Seventy-six presumed Shewanella putrefaciens isolates from fish, oil drillings, and clinical specimens, the type strain of Shewanella putrefaciens (ATCC 8071), the type strain of Shewanella alga (IAM 14159), and the type strain of Shewanella hanedai (ATCC 33224) were compared by several typing methods. Numerical analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell protein and ribotyping patterns showed that the strains were separated into two distinct clusters with 56% +/- 10% and 40% +/- 14% similarity for whole-cell protein profiling and ribotyping, respectively. One cluster consisted of 26 isolates with 52 to 55 mol% G + C and included 15 human isolates, mostly clinical specimens, 8 isolates from marine waters, and the type strain of S. alga. This homogeneous cluster of mesophilic, halotolerant strains was by all analyses identical to the recently defined species S. alga (U. Simidu et al., Int. J. Syst. Bacteriol, 40:331-336, 1990). Fifty-two typically psychrotolerant strains formed the other, more heterogeneous major cluster, with 43 to 47 mol% G + C. The type strain of S. putrefaciens was included in this group. The two groups were confirmed by 16S rRNA gene sequence analysis. It is concluded that the isolates must be considered two different species, S. alga and S. putrefaciens, and that most mesophilic isolates formerly identified as S. putrefaciens belong to S. alga. The ecological role and potential pathogenicity of S. alga can be evaluated only if the organism is correctly identified.  相似文献   

12.
The mechanisms by which the dissimilatory Fe(III)-reducing bacterium Shewanella alga adheres to amorphous Fe(III) oxide were examined through comparative analysis of S. alga BrY and an adhesion-deficient strain of this species, S. alga RAD20. Approximately 100% of S. alga BrY cells typically adhered to amorphous Fe(III) oxide, while less than 50% of S. alga RAD20 cells adhered. Bulk chemical analysis, isoelectric point analysis, and cell surface analysis by time-of-flight secondary-ion mass spectrometry and electron spectroscopy for chemical analysis demonstrated that the surfaces of S. alga BrY cells were predominantly protein but that the surfaces of S. alga RAD20 cells were predominantly exopolysaccharide. Physicochemical analyses and hydrophobic interaction assays demonstrated that S. alga BrY cells were more hydrophobic than S. alga RAD20 cells. This study represents the first quantitative analysis of the adhesion of a dissimilatory Fe(III)-reducing bacterium to amorphous Fe(III) oxide, and the results collectively suggest that hydrophobic interactions are a factor in controlling the adhesion of this bacterium to amorphous Fe(III) oxide. Despite having a reduced ability to adhere, S. alga RAD20 reduced Fe(III) oxide at a rate identical to that of S. alga BrY. This result contrasts with results of previous studies by demonstrating that irreversible cell adhesion is not requisite for microbial reduction of amorphous Fe(III) oxide. These results suggest that the interaction between dissimilatory Fe(III)-reducing bacteria and amorphous Fe(III) oxide is more complex than previously believed.  相似文献   

13.
Photosynthesis is one of the most important metabolic processes of algae; which is altered as a stress response. During mass cultivation of algae, temperature rise and high light are major factors that affect biomass productivity. High temperature affects photosystem II (PSII) complex irreversibly, damaging intermolecular interactions in it. However, the impact of high temperature on photosynthesis is highly variable among different algal species, depending on the prior acclimation to environmental conditions they were exposed to. The acclimation plays an important role in combating high temperature stress via regulation of photosynthetic responses. Chlorophyll a fluorescence is a highly sensitive, non‐destructive and reliable tool for such measurements of photosynthetic parameters, which provides information about algal photosynthetic performance under given conditions. To understand the effect of heat stress on the responses of high light acclimated alga Chlorella saccharophila, chlorophyll a fluorescence transients were measured after heat exposure at 40°C. Our study demonstrates that rise in temperature for short duration; during open field cultivation reversibly affects the efficiency of PSII in light acclimated alga C. saccharophila. The effects of heat stress on chlorophyll a fluorescence in this alga, grown under high light (max‐1600 μmol photons m?2 s?1) are presented here; they are used to infer changes in photosynthetic process during its exposure to heat, as well as their recovery after 72 h. We speculate that heat resistance may have been acquired due to prior exposures to high light.  相似文献   

14.
The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HFO adhesion molecules. S. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.  相似文献   

15.
LHCII is the most abundant membrane protein on earth. It participates in the first steps of photosynthesis by harvesting sunlight and transferring excitation energy to the core complex. Here we have analyzed the LHCII complex of the green alga Chlamydomonas reinhardtii and its association with the core of Photosystem II (PSII) to form multiprotein complexes. Several PSII supercomplexes with different antenna sizes have been purified, the largest of which contains three LHCII trimers (named S, M and N) per monomeric core. A projection map at a 13 Å resolution was obtained allowing the reconstruction of the 3D structure of the supercomplex. The position and orientation of the S trimer are the same as in plants; trimer M is rotated by 45° and the additional trimer (named here as LHCII-N), which is taking the position occupied in plants by CP24, is directly associated with the core. The analysis of supercomplexes with different antenna sizes suggests that LhcbM1, LhcbM2/7 and LhcbM3 are the major components of the trimers in the PSII supercomplex, while LhcbM5 is part of the “extra” LHCII pool not directly associated with the supercomplex. It is also shown that Chlamydomonas LHCII has a slightly lower Chlorophyll a/b ratio than the complex from plants and a blue shifted absorption spectrum. Finally the data indicate that there are at least six LHCII trimers per dimeric core in the thylakoid membranes, meaning that the antenna size of PSII of C. reinhardtii is larger than that of plants.  相似文献   

16.
17.
Chlorophyll synthesis is stimulated by red light in the green alga Ulva rigida C. Ag. and in the red alga Porphyra umbilicalis (L.) Kützing. Because the effect of red light showed some far-red reversibility in successive red and far-red light treatments, the involvement of phytochrome or a phytochrome-like photoreceptor is suggested. The extent of the response is dependent on exposure and photon fluence rate of red-light pulses. In addition to the effect of red light, a strong stimulation of chlorophyll synthesis by blue light was only observed in Ulva rigida. The effect of blue light shows also some far-red reversibility. In the green alga the accumulated chlorophyll is higher after blue light pulses than after red light pulses. In Porphyra umbilicalis , however, the contrary is observed. In Ulva rigida the involvement of a blue light photoreceptor in addition to phytochrome or a phytochrome-like photoreceptor is proposed. The different responses to red and blue light in both algae are explained in terms of their adaptation to the natural light environment.  相似文献   

18.
Light-harvesting Chl a/b protein complexes were isolated from the higher plant Sinapis alba, the green alga Chlorella fusca, and the prasinophycean alga Mantoniella squamata by mild gel electrophoresis. The energy transfer from chlorophyll b and the accessory xanthophyll was measured by means of fluoresence spectroscopy at 77 K. The pigment composition of the isolated antenna complexes was determined by high performance liquid chromatography in order to calculate the number of light absorbing molecules per chlorophyll a in the different light-harvesting complexes. These results were complemented by the quantitation of the pigments in total thylakoids as well as in the different electrophoretic fractions. On the basis of these data the in vivo ratios of xanthophylls per chlorophyll a could be estimated. The results show that the light-harvesting complexes from Chlorella and from Sinapis exhibit identical ratios of total xanthophylls per chlorophyll a. By contrast, in the prasinophycean alga Mantoniella, the light-harvesting complex markedly differs from the other chlorophyll b containing proteins. It contains, in addition to neoxanthin and violaxanthin, high amounts of prasinoxanthin and its epoxide, which contribute significantly to light absorption. The concentration of chlorophyll b in the complex is very much higher in the antenna of Mantoniella than in those of Chlorella and Sinapis. Furthermore, it must be emphasized that in addition to chlorophyll b, a third chlorophyll species acts in the energy transfer to chlorophyll a. This chlorophyll c-like pigment is found to be present in a concentration which improves very efficiently the absorption in blue light. In light of these results it can be concluded that the absorption cross section in Mantoniella is higher not only because of an enhanced number of light-harvesting particles in the membrane, but also because of a higher ratio of accessory pigments to chlorophyll a.Abbreviations Chl Chlorophyll - FP Free Pigments - HPLC High Performance Liquid Chromatography - LHC Light-harvesting Chlorophyll protein complex - PAGE Polyacrylamide Gel Electrophoresis - PS Photosystem  相似文献   

19.
Chlorophyll a and chlorophyll b are the major constituents of the photosynthetic apparatus in land plants and green algae. Chlorophyll a is essential in photochemistry, while chlorophyll b is apparently dispensable for their photosynthesis. Instead, chlorophyll b is necessary for stabilizing the major light-harvesting chlorophyll-binding proteins. Chlorophyll b is synthesized from chlorophyll a and is catabolized after it is reconverted to chlorophyll a. This interconversion system between chlorophyll a and chlorophyll b refers to the chlorophyll cycle. The chlorophyll b levels are determined by the activity of the three enzymes participating in the chlorophyll cycle, namely, chlorophyllide a oxygenase, chlorophyll b reductase, and 7-hydroxymethyl-chlorophyll reductase. This article reviews the recent progress on the analysis of the chlorophyll cycle and its enzymes. In particular, we emphasize the impact of genetic modification of chlorophyll cycle enzymes on the construction and destruction of the photosynthetic machinery. These studies reveal that plants regulate the construction and destruction of a specific subset of light-harvesting complexes through the chlorophyll cycle. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

20.
Oligonucleotide catalogues from 16S rRNA have been a major source of information for phylogenetic reconstruction among procaryotes. Several large procaryote groups have been analyzed and phylogenies presented. Catalogues are also available for many chloroplasts. The hypotheses of phylogeny are derived mainly from similarity (phenetic) comparisons of the catalogues and the extent of the homoplasy (parallelisms and reversals) involved has not been estimated properly. Although catalogues are currently being superseded by complete sequence data, an evaluation of the strength of catalogue data, and hence of the strength of the extensive phylogenetic hypotheses derived from them, is in order. Cladistic analysis of 16S rRNA oligonucleotide catalogues from three blue-green procaryotes, Prochloron, and chloroplasts of a red alga, Euglena, a green alga and two flowering plants shows that there is extensive homoplasy in the catalogues and several phylogenetic trees are possible. The corresponding consensus trees indicate that little or nothing can be said about interrelationships and chloroplast origin on the basis of these particular catalogues, except that Prochloron may be more closely related to the blue-greens than to chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号