共查询到20条相似文献,搜索用时 0 毫秒
1.
Sebai M Lu S Xiang L Hester RL 《American journal of physiology. Heart and circulatory physiology》2011,301(3):H1090-H1096
Obese individuals exhibit impaired functional vasodilation and exercise performance. We have demonstrated in obese Zucker rats (OZ), a model of morbid obesity, that insulin resistance impairs functional vasodilation via an increased thromboxane receptor (TP)-mediated vasoconstriction. Chronic treadmill exercise training improves functional vasodilation in the spinotrapezius muscle of the OZ, but the mechanisms responsible for the improvement in functional vasodilation are not clear. Based on evidence that exercise training improves insulin resistance, we hypothesized that, in the OZ, exercise training increases functional vasodilation and exercise capability due to decreases TP-mediated vasoconstriction associated with improved insulin sensitivity. Six-week-old lean Zucker rats (LZ) and OZ were exercised on a treadmill (24 m/min, 30 min/day, 5 days/wk) for 6 wk. An oral glucose tolerance test was performed at the end of the training period. We measured functional vasodilation in both exercise trained (spinotrapezius) and nonexercise trained (cremaster) muscles to determine whether the improved functional vasodilation following exercise training in OZ is due to a systemic improved insulin resistance. Compared with LZ, the sedentary OZ exhibited impairments in glucose tolerance and functional vasodilation in both muscles. The TP antagonist SQ-29548 improved the vasodilator responses in the sedentary OZ with no effect in the LZ. Exercising training of the LZ increased the functional vasodilation in spinotrapezius muscle, with no effect in the cremaster muscle. Exercising training of the OZ improved glucose tolerance, along with increased functional vasodilation, in both the spinotrapezius and cremaster muscles. SQ-29548 treatment had no effect on the vasodilator responses in either cremaster or spinotrapezius muscles of the exercise-trained OZ. These results suggest that, in the OZ, there is a global effect of exercising training to improve insulin resistance and increase functional vasodilation via a decreased TP-mediated vasoconstriction. 相似文献
2.
A striking characteristic of the blood flow adaptation at exercise onset is the immediate and substantial increase in the first few (0-5 s) seconds of exercise. The purpose of this mini-review is to put into context the present evidence regarding mechanisms responsible for this phase of exercise hyperemia. One potential mechanism that has received much attention is the mechanical effect of muscle contraction (the muscle pump). The rapid vasodilatory mechanism(s) is another possible mechanism that has recently been shown to exist. This review will provide the reader with 1) an understanding of the basic physics of blood flow and the theories of muscle pump function, 2) a critical examination of evidence both for and against the contribution of the muscle pump or rapid vasodilatory mechanisms, and 3) an awareness of the limitations and impact of experimental models and exercise modes on the contribution of each of these mechanisms to the immediate exercise hyperemia. The inability to measure microvenular pressure continues to limit investigators to indirect assessments of the muscle pump vs. vasodilatory mechanism contributions to immediate exercise hyperemia in vivo. Future research directions should include examination of muscle-contraction-induced resistance vessel distortion as a trigger for rapid smooth muscle relaxation and further investigation into the exercise mode dependency of muscle pump vs. rapid vasodilatory contributions to immediate exercise hyperemia. 相似文献
3.
Endurance exercise training (Ex) has been shown to increase maximal skeletal muscle blood flow. The purpose of this study was to test the hypothesis that increased endothelium-dependent vasodilation is associated with the Ex-induced increase in muscle blood flow. Furthermore, we hypothesized that enhanced endothelium-dependent dilation is confined to vessels in high-oxidative muscles that are recruited during Ex. To test these hypotheses, sedentary (Sed) and rats that underwent Ex (30 m/min x 10% grade, 60 min/day, 5 days/wk, 8-12 wk) were studied using three experimental approaches. Training effectiveness was evidenced by increased citrate synthase activity in soleus and vastus lateralis (red section) muscles (P < 0.05). Vasodilatory responses to the endothelium-dependent agent acetylcholine (ACh) in situ tended to be augmented by training in the red section of gastrocnemius muscle (RG; Sed: control, 0.69 +/- 0.12; ACh, 1.25 +/- 0.15; Ex: control, 0.86 +/- 0.17; ACh, 1.76 +/- 0.27 ml x min(-1) x 100 g(-1) x mmHg(-1); 0.05 < P < 0.10 for Ex vs. Sed during ACh). Responses to ACh in situ did not differ between Sed and Ex for either the soleus muscle or white section of gastrocnemius muscle (WG). Dilatory responses of second-order arterioles from the RG in vitro to flow (4-8 microl/min) and sodium nitroprusside (SNP; 10(-7) through 10(-4) M), but not ACh, were augmented in Ex (vs. Sed; P < 0.05). Dilatory responses to ACh, flow, and SNP of arterioles from soleus and WG muscles did not differ between Sed and Ex. Content of the endothelial isoform of nitric oxide synthase (eNOS) was increased in second-order, fourth-order, and fifth-order arterioles from the RG of Ex; eNOS content was similar between Sed and Ex in vessels from the soleus and WG muscles. These findings indicate that Ex induces endothelial adaptations in fast-twitch, oxidative, glycolytic skeletal muscle. These adaptations may contribute to enhanced skeletal muscle blood flow in endurance-trained individuals. 相似文献
4.
M E Tschakovsky A M Rogers K E Pyke N R Saunders N Glenn S J Lee T Weissgerber E M Dwyer 《Journal of applied physiology》2004,96(2):639-644
We tested the hypothesis that rapid vasodilation proportional to contraction intensity contributes to the immediate (first cardiac cycle after initial contraction) exercise hyperemia. Ten healthy subjects performed single 1-s isometric forearm contractions at 5, 10, 15, 20, 30, 50, and 70% maximal voluntary contraction intensity (MVC) in arm above heart (AH) and below heart (BH) positions. Forearm blood flow (FBF; brachial artery mean blood velocity, Doppler ultrasound), mean arterial pressure (arterial tonometry), and heart rate (electrocardiogram) were measured beat by beat. Venous emptying (measured with a forearm strain gauge) was already maximized at 5% MVC, indicating that increases in contraction intensity did not further empty the forearm veins. Immediate increases in FBF were linearly proportional to contraction intensity from 5 to 70% MVC in AH (slope = 4.4 +/- 0.5%DeltaFBF/%MVC). In BH, the immediate increase in FBF demonstrated a curvilinear relationship with increasing contraction intensity and was greater than AH at 15, 20, 30, and 50% MVC (P < 0.05). Peak changes in FBF were greater in BH vs. AH from 10 to 50% MVC, even when venous refilling was complete (P < 0.05). These data support the existence of a rapid-acting vasodilatory mechanism(s) at the onset of human forearm exercise. 相似文献
5.
Lash, Julia M., and H. Glenn Bohlen. Time- andorder-dependent changes in functional and NO-mediated dilation during exercise training. J. Appl. Physiol.82(2): 460-468, 1997.Arterial vessel responses to sodiumnitroprusside (SNP) and acetylcholine (ACh) were measured in thespinotrapezius muscle of sedentary (Sed) and treadmill-trained (Tr)rats to determine whether these endothelium-dependent (ACh) and-independent (SNP) mechanisms contribute to thetraining-induced increase in functional vasodilation previouslyobserved. Control and maximal vessel diameters were similar between Sedand Tr. After 8 wk of training, functional dilation (2-, 4-, and 8-Hzcontractions) was enhanced in all orders of vessels studied[terminal feed artery (FA), largest arterioles (1A), andintermediate-sized arterioles (2A)], but responses to SNP wereincreased only in FA. Responses to ACh were not significantly increasedin any vessel order. After 16 wk of training, functional dilation hadregressed in Tr such that only the FA response to 4 Hz wassignificantly elevated relative to Sed. However, the FA and 1Aresponses to SNP were significantly greater in Tr than in Sed, as werethe 1A and 2A responses to ACh. These results show a dissociation offunctional dilation and SNP- or ACh-mediated responses, as well asage-dependent interactions, a time-dependent progression, and vesselorder specificity in the adaptations to training. 相似文献
6.
The present investigation examined the extent to which 15 wk of endurance training could influence immune function in young, middle-aged, and older animals. Forty-eight male Fischer 344 rats were divided into trained and untrained groups. Training consisted of treadmill running at 75% maximal running capacity for 1 h/day, 5 days/wk, for 15 wk. Animals were killed at 8, 17, and 27 mo, at which time splenocytes were isolated. The capacity for lymphocyte proliferation in response to mitogen (concanavalin A, ConA), interleukin-2 (IL-2) production, and cytolytic activity against YAC-1 target cells was determined. ConA-induced proliferation declined significantly with age. Training suppressed the proliferative response in the young (-41%) and middle-aged animals (-27%) compared with the age-matched controls; however, training improved this response (+58%) in the older group. IL-2 production followed a pattern similar to that for mitogen-induced proliferation, such that production declined with age and was reduced with training in young and middle-aged animals but was significantly more improved in the older animals than in age-matched controls. The ability to lyse target cells, measured as percent cytotoxicity, declined steadily with advancing age at all effector-to-target cell ratios tested: 52, 14, and -16% for 8-, 17-, and 27-mo-old rats, respectively. It was concluded that the capacity for ConA-induced splenocyte proliferation, IL-2 production, and cytolytic activity declines significantly with advancing age. Furthermore, 15 wk of endurance training suppressed proliferation and IL-2 production in young animals but improved these responses in older animals. Training had no effect on cytolytic activity. 相似文献
7.
Normal ageing is associated with a gradual decline in the capacity of various cell types, including neurones, to respond to metabolic stress and return to the resting state. An important factor in the decrease of this 'homeostatic reserve' is the gradual, age-dependent impairment of mitochondrial function. In this article we review some of the major structural and functional changes in mitochondria associated with ageing. Apart from the increased mutations in mitochondrial DNA and the evidence for increased oxidative stress with ageing, we also discuss, in some detail, the importance of the mitochondrial membrane structure and composition (in particular lipid composition) for mitochondrial function in general and during ageing. Although some of the neurodegenerative diseases are also associated with some degree of mitochondrial dysfunction, it is not yet clear if these changes are due to the underlining process of normal, physiological ageing or due to the specific pathophysiologic agents responsible for the neurodegenerative processes. Furthermore, we are proposing that there are important differences between normal ageing and neurodegeneration. 相似文献
8.
9.
B R Duling R D Hogan B L Langille P Lelkes S S Segal S F Vatner H Weigelt M A Young 《Federation proceedings》1987,46(2):251-263
Historically, functional hyperemia has been viewed largely as an interaction between a parenchymal cell and its associated microvasculature. Locally released metabolites have been thought to produce relaxation of the smooth muscle and a vasodilation that increases blood flow in proportion to metabolic need. This symposium report presents evidence from a variety of disciplines and a number of different types of biological preparations that demonstrates that functional hyperemia is a complex process involving several classes of microvessels including capillaries, arterioles, and small arteries. These vessels do not function independently but are coordinated by a complex set of interrelations involving at least three different modes of interaction between parenchymal cells and the various segments of the vascular bed. These are local metabolic effects, propagated effects extending over long segments of the vasculature, and flow-dependent vasodilation induced by local changes in blood flow. In addition to these acute responses to metabolic demand it appears that tissues may be capable of more long-term structural alterations of the arterial and arteriolar network in response to sustained changes in the relationship between supply and demand. The vascular bed appears to be able to adapt either by increasing the maximal anatomic diameter of the large arteries or by inserting new arterioles into the parenchyma. Thus, classical functional hyperemia appears to be but one manifestation of a multifaceted process leading to highly coordinated responses of many vascular elements, resulting finally in vascular patterns that are optimized to meet parenchymal cell demands. 相似文献
10.
Jendzjowsky NG DeLorey DS 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,303(3):R332-R339
We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups. Rats were anesthetized and instrumented for study 24 h after the last training session. Arterial pressure and femoral artery blood flow were measured, and femoral vascular conductance (FVC) was calculated. Lumbar sympathetic chain stimulation was delivered continuously at 2 Hz and in patterns at 20 and 40 Hz. EDD was assessed by the vascular response to intra-arterial bolus injections of ACh. The response (% change FVC) to sympathetic stimulation increased (P < 0.05) in a training intensity-dependent manner at 2 Hz (S: -20.2 ± 9.8%, M: -34.0 ± 6.7%, and H: -44.9 ± 2.0%), 20 Hz (S: -22.0 ± 10.6%, M: -31.2 ± 8.4%, and H: -42.8 ± 5.9%), and 40 Hz (S: H -24.5 ± 8.5%, M: -35.1 ± 8.9%, H: -44.9 ± 6.5%). The magnitude of EDD also increased in a training intensity-dependent manner (P < 0.05). These data demonstrate that short-term exercise training augments the magnitude of vasoconstriction in response to sympathetic stimulation and EDD in resting skeletal muscle in a training intensity-dependent manner. 相似文献
11.
Wunsch SA Muller-Delp J Delp MD 《American journal of physiology. Heart and circulatory physiology》2000,279(4):H1715-H1723
At the onset of dynamic exercise, muscle blood flow increases within 1-2 s. It has been postulated that local vasodilatory agents produced by the vascular endothelium or the muscle itself contribute to this response. We hypothesized that only vasodilators that act directly on the vascular smooth muscle could produce vasodilation of skeletal muscle arterioles in <2 s. To test this hypothesis, we determined the time course of the vasodilatory response of isolated skeletal muscle arterioles to direct application of potassium chloride, adenosine, acetylcholine, and sodium nitroprusside. Soleus and gastrocnemius muscles were dissected from the hindlimbs of male Sprague-Dawley rats. First-order arterioles (100-200 microm) were isolated, cannulated on micropipettes, and pressurized to 60 cmH(2)O in an organ bath. Vasodilatory agents were added directly to the bath, and diameter responses of the arterioles were recorded in real time on a videotape recorder. Frame-by-frame analysis of the diameter responses indicated that none of the vasodilator agents tested produced significant diameter increases in <4 s in either soleus or gastrocnemius muscle arterioles. These results indicate that, although these local vasodilators produce significant vasodilation of skeletal muscle resistance arterioles, these responses are not rapid enough (within 1-2 s) to contribute to the initiation of the exercise hyperemic response at the onset of dynamic exercise. 相似文献
12.
13.
Two ultrastructurally distinct types of Leydig cells were observed in the equine testis. Whereas the adult testis exhibited both postpubertal and adult Leydig cells, the testis of the pubertal horse contained only the postpubertal type, and that of the aged horse contained only the adult type. However, Percoll-purified testicular preparations from pubertal, adult, and aged horses all exhibited two distinct Leydig cell populations. The quantitative distribution and the functional characteristics of these Leydig cell populations (ability to bind human chorionic gonadotropin [hCG] and increase of testosterone production after hCG stimulation) evolved with the age of the horse. It is concluded that equine Leydig cells derive from two redundant successive postnatal generations and that there is no strict correlation between the functional properties and the morphological characteristics of these cells. 相似文献
14.
It is known that there is an age-related increase in gastrointestinal diseases. However, there is a lack of studies dealing with the correlation between age-related changes in function and intrinsic innervation in the gastrointestinal tract. The purpose of this work was to study this subject in the guinea pig ileum, whose functional and structural features are well known in the young age. Ileal longitudinal muscle — myenteric plexus (LMMP) preparations were obtained from 3-to 24-month-old guinea pigs. Both functional and immunohistochemical techniques were applied. The force of the contraction elicited by excitatory stimuli (electrical stimulation, acetylcholine, substance P, and opioid withdrawal) increased in parallel with an age-dependent reduction in the density of excitatory motor neurones to the longitudinal muscle, whereas other subpopulations of neurones, including inhibitory motor neurones, decreased much more slowly. Although the increase in responsiveness could be related to the age/weight-related increment in muscle bulk, some compensatory modifications to the lowered density of excitatory neurones could also be involved. On the other hand, the acute inhibitory response to morphine remained unaltered in old animals, whilst in vitro tolerance was lower. These results suggest that although age-dependent neuronal loss does not cause dramatic changes in intestinal motility, it is a factor that could contribute to disturbing normal responsiveness and, perhaps, underlie the higher frequency of gastrointestinal diseases encountered in the elderly. 相似文献
15.
Hippocampal functional hyperemia mediated by NMDA receptor/NO signaling in rats during mild exercise
Nishijima T Okamoto M Matsui T Kita I Soya H 《Journal of applied physiology (Bethesda, Md. : 1985)》2012,112(1):197-203
Current studies have demonstrated that exercise increases regional cerebral blood flow (rCBF), an index of neuronal activity. However, neuronal regulation of the increased rCBF in the brain parenchyma is poorly understood. We developed a running model with rats for monitoring hippocampal cerebral blood flow (Hip-CBF) and found that mild treadmill running increases Hip-CBF in a tetrodotoxin-dependent manner, suggesting that functional hyperemia, an increase in rCBF in response to neuronal activation, occurs in the running rat's hippocampus (Nishijima T and Soya H. Neurosci Res 54: 186-191, 2006). To further support our hypothesis, it was important to discover the neurogenic pathways behind the increase in Hip-CBF that occurred during running. Here, we examine the possible role of N-methyl-d-aspartate (NMDA) receptor/nitric oxide (NO) signaling and group I metabotropic glutamate receptors in mediating the Hip-CBF increase. Hip-CBF during running was measured by laser-Doppler flowmetry. Intrahippocampal drug administration was performed by microdialysis. Mild treadmill running (10 m/min) increased Hip-CBF, which was remarkably attenuated by either NMDA receptor antagonists (1 mM MK-801) or NO synthase inhibitors (2 mM N(G)-nitro-l-arginine methyl ester). However, group I metabotropic glutamate receptor antagonists {1 mM 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester + 1 mM 2-methyl-6-(phenylethynyl)pyridine hydrochloride} augmented the running-induced Hip-CBF increase. We also found that rCBF in the olfactory bulb was unchanged with running. These results strongly suggest that Hip-CBF during mild exercise is regulated locally under hippocampal neuronal activity, mediated mainly through NMDA receptor/NO signaling. Collectively, these results, together with our previous findings, support our hypothesis that mild exercise elicits neuronal activation, which then triggers functional hyperemia in the rat hippocampus. 相似文献
16.
17.
Grey EM Chan CK Chen Y Hofmann PA 《American journal of physiology. Heart and circulatory physiology》2003,285(1):H90-H96
Conflicting reports exist regarding the influence of beta-adrenergic stimulation on the maximum velocity of shortening (Vmax) in ventricular myocytes. This may be due to an unrecognized effect of maturation. In the present study, the effects of beta-adrenergic receptor stimulation on myocytes from hearts of juvenile nonbred and young adult retired breeder female rats were compared. Ventricular myocytes from young adults had a beta-adrenergic-dependent increase in Vmax and Ca2+-dependent actomyosin ATPase that was not observed in myocytes from juveniles. Myocytes from young adults had both an increase in beta-myosin heavy chain (MHC) and higher basal serine/threonine phosphatase activity compared with juvenile rats. Additional studies established moderate increases in beta-MHC induced by hypothyroidism do not confer myocardial beta-adrenergic responsiveness, whereas inhibition of the higher phosphatase activity in myocytes from young adults blocks the age-dependent, beta-adrenergic-induced increase in cross-bridge cycling rates. We propose that the higher phosphatase activity of myocytes from young adults compared with juveniles allows for a greater functional response of the myocardium to beta-adrenergic stimulation. 相似文献
18.
The purpose of this study was to test the hypothesis that muscarinic cholinergic receptors are involved in the initial vasodilation in red muscle vascular beds of conscious rats performing slow locomotory exercise. Atropine sulfate (1 mg/kg, ia) was administered to one group of rats in which distribution of cardiac output was estimated with radiolabeled microspheres immediately before exercise while the animals were standing on the treadmill and at 30 s and 5 min of treadmill walking at 15 m/min. Blood flows within and among muscles in the atropine-treated animals were compared with flows in control rats that were given a sham injection of an equal volume of physiological saline. Heart rates were elevated above those of control animals in the atropinized rats during preexercise (+17%) and at 30 s of exercise (+15%). However, distributions and magnitudes of blood flows in nonmuscular tissues and within and among skeletal muscles were the same (P greater than 0.05) in atropinized and control rats during preexercise and at both exercise times, indicating that atropine had no effect on the distribution of cardiac output in the rats. It is concluded that muscarinic cholinergic receptors do not play a significant role in elevating muscle blood flow in conscious rats, either during the preexercise anticipatory phase or during slow locomotory exercise. 相似文献
19.
Ricardo José Gomes José Alexandre Curiacos de Almeida Leme Leandro Pereira de Moura Michel Barbosa de Araújo Gustavo Puggina Rogatto Rodrigo Ferreira de Moura Eliete Luciano Maria Alice Rostom de Mello 《Cell biochemistry and function》2009,27(4):199-204
To investigate the alterations of glucose homeostasis and variables of the insulin‐like growth factor‐1 (IGF‐1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg?1 b.w.). Training program consisted of swimming 5 days week?1, 1 h day?1, during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF‐1, and IGF binding protein‐3 (IGFBP‐3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF‐1 content. Diabetes decreased serum GH, IGF‐1, IGFBP‐3, liver glycogen, and cerebellum IGF‐1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF‐1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF‐1 concentrations. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Diego A. Rodríguez Gema Alcarraz-Vizán Santiago Díaz-Moralli Michelle Reed Federico P. Gómez Francesco Falciani Ulrich Günther Josep Roca Marta Cascante 《Metabolomics : Official journal of the Metabolomic Society》2012,8(3):508-516
The study examines plasma metabolic profiles of patients with chronic obstructive pulmonary disease (COPD) to prove whether the disease influences metabolism at rest and after endurance training. This is based on the hypothesis that metabolome levels should reflect impaired skeletal muscle bioenergetics in COPD. The study aims to test this hypothesis by evaluating plasma metabolic profiles in COPD patients before and after 8?weeks of endurance exercise training. We studied blood samples from 18 COPD patients and 12 healthy subjects. Pre- and post-training blood plasma samples at rest and after constant-work rate exercise (CWRE) at 70% of pre-training Watts peak were analyzed by 1H-nuclear magnetic resonance spectroscopy to assess metabolite profiles. The two groups presented training-induced physiological changes in the VO2 peak and in blood lactate levels (P?<?0.01 each). Before training, the two groups also showed differences in metabolic profiles at rest (P?<?0.05). Levels of valine (r?=?0.51, P?<?0.01), alanine (r?=?0.45, P?<?0.05) and isoleucine (r?=?0.51, P?<?0.01) were positively associated with body composition (Fat Free Mass Index). While training showed a significant impact on the metabolic profile in healthy subjects (P?<?0.001), with changes in levels of amino acids, creatine, succinate, pyruvate, glucose and lactate (P?<?0.05 each), no equivalent training-induced effects were seen in COPD patients in whom only lactate decreased (P?<?0.05). This study shows that plasma metabolic profiling contributes to the phenotypic characterization of COPD patients. 相似文献