首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of human multiple sclerosis (MS). We have evaluated the role of oxidative and nitrosative stress, as the causal factors in the development of EAE, responsible for the damage of cardinal cellular components, such as lipids, proteins and nucleic acids, resulting in demyelination, axonal damage, and neuronal death. EAE was induced in female Sprague-Dawley rats, 3 months old (300 ± 20 g), by immunization with myelin basic protein in combination with Complete Freund's adjuvant (CFA). The animals were divided into seven groups: control, EAE, CFA, EAE + aminoguanidine (AG), AG, EAE + N-acetyl-l-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the levels of nitrosative and oxidative stress were determined in 10% homogenate of the whole encephalitic mass. In EAE rats, brain NO production and MDA level were significantly increased (P < 0.001) compared to the control values, whereas AG and NAC treatment decreased both parameters in EAE rats compared to EAE group (P < 0.001). Glutathione (GSH) was reduced (P < 0.001) in EAE rats in comparison with the control and CFA groups, but increased in EAE + AG and EAE + NAC group compared to the EAE group (P < 0.01). Superoxide dismutase (SOD) activity was significantly decreased (P < 0.001) in the EAE group compared to all other experimental groups. The clinical expression of EAE was significantly decreased (P < 0.05) in the EAE groups treated with AG and NAC compared to EAE rats, during disease development.

The obtained results prove an important role of oxidative and nitrosative stress in the pathogenesis of EAE, whereas AG and NAC protective effects offer new possibilities for a modified combined approach in MS therapy.  相似文献   

2.
Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of human multiple sclerosis (MS). We have evaluated the role of oxidative and nitrosative stress, as the causal factors in the development of EAE, responsible for the damage of cardinal cellular components, such as lipids, proteins and nucleic acids, resulting in demyelination, axonal damage, and neuronal death. EAE was induced in female Sprague-Dawley rats, 3 months old (300±20 g), by immunization with myelin basic protein in combination with Complete Freund's adjuvant (CFA). The animals were divided into seven groups: control, EAE, CFA, EAE+aminoguanidine (AG), AG, EAE+N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the levels of nitrosative and oxidative stress were determined in 10% homogenate of the whole encephalitic mass. In EAE rats, brain NO production and MDA level were significantly increased (P<0.001) compared to the control values, whereas AG and NAC treatment decreased both parameters in EAE rats compared to EAE group (P<0.001). Glutathione (GSH) was reduced (P<0.001) in EAE rats in comparison with the control and CFA groups, but increased in EAE+AG and EAE+NAC group compared to the EAE group (P<0.01). Superoxide dismutase (SOD) activity was significantly decreased (P<0.001) in the EAE group compared to all other experimental groups. The clinical expression of EAE was significantly decreased (P<0.05) in the EAE groups treated with AG and NAC compared to EAE rats, during disease development. The obtained results prove an important role of oxidative and nitrosative stress in the pathogenesis of EAE, whereas AG and NAC protective effects offer new possibilities for a modified combined approach in MS therapy.  相似文献   

3.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are signal-transducing molecules that regulate the activities of a variety of proteins. In the present investigation, we have compared the effects of superoxide (O2-), nitric oxide (NO), and hydrogen peroxide (H2O2) on the activities of three highly homologous serine/threonine phosphatases, protein phosphatase type 1 (PP1), protein phosphatase type 2A (PP2A), and calcineurin (protein phosphatase type 2B). Although superoxide, generated from xanthine/xanthine oxidase or paraquat, and NO, generated from (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide or sodium nitroprusside, potently inhibited the phosphatase activity of calcineurin in neuroblastoma cell lysates, they had relatively little effect on the activities of PP1 or PP2A. In contrast, H2O2 inhibited the activities of all three phosphatases in lysates but was not a potent inhibitor for any of the enzymes. Calcineurin inactivated by O2-, NO, and H2O2 could be partially reactivated by the reducing agent ascorbate or by the thiol-specific reagent dithiothreitol (DTT). Maximal reactivation was achieved by the addition of both reagents, which suggests that ROS and RNS inhibit calcineurin by oxidizing both a catalytic metal(s) and a critical thiol(s). Reactivation of H2O2-treated PP1 also required the combination of both ascorbate and DTT, whereas PP2A required only DTT for reactivation. These results suggest that, despite their highly homologous structures, calcineurin is the only major Ser/Thr phosphatase that is a sensitive target for inhibition by superoxide and nitric oxide and that none of the phosphatases are sensitive to inhibition by hydrogen peroxide.  相似文献   

4.
The discovery of melatonin and its derivatives as antioxidants has stimulated a very large number of studies which have, virtually uniformly, documented the ability of these molecules to detoxify harmful reactants and reduce molecular damage. These observations have clear clinical implications given that numerous age-related diseases in humans have an important free radical component. Moreover, a major theory to explain the processes of aging invokes radicals and their derivatives as causative agents. These conditions, coupled with the loss of melatonin as organisms age, suggest that some diseases and some aspects of aging may be aggravated by the diminished melatonin levels in advanced age. Another corollary of this is that the administration of melatonin, which has an uncommonly low toxicity profile, could theoretically defer the progression of some diseases and possibly forestall signs of aging. Certainly, research in the next decade will help to define the role of melatonin in age-related diseases and in determining successful aging. While increasing life span will not necessarily be a goal of these investigative efforts, improving health and the quality of life in the aged should be an aim of this research.  相似文献   

5.
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme–copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

6.
Mycobacterium tuberculosis (M.tb.), the causative agent of tuberculosis (TB), cannot synthesize GSH, but synthesizes two major low molecular weight thiols namely mycothiol (MSH) and ergothioneine (ERG). Gamma-glutamylcysteine (GGC), an intermediate in GSH synthesis, has been implicated in the protection of lactic acid bacteria from oxidative stress in the absence of GSH. In mycobacteria, GGC is an intermediate in ERG biosynthesis, and its formation is catalysed by EgtA (GshA). GGC is subsequently used by EgtB in the formation of hercynine-sulphoxide-GGC. In this study, M.tb. mutants harbouring unmarked, in-frame deletions in each of the fives genes involved in ERG biosynthesis (egtA, egtB, egtC, egtD and egtE) or a marked deletion of the mshA gene (required for MSH biosynthesis) were generated. Liquid chromatography tandem mass spectrometry analyses (LC-MS) revealed that the production of GGC was elevated in the MSH-deficient and the ERG-deficient mutants. The ERG-deficient ΔegtB mutant which accumulated GGC was more resistant to oxidative and nitrosative stress than the ERG-deficient, GGC-deficient ΔegtA mutant. This implicates GGC in the detoxification of reactive oxygen and nitrogen species in M.tb.  相似文献   

7.
Pulmonary arterial hypertension (PH) is a fatal disease marked by excessive pulmonary vascular cell proliferation. Patients with idiopathic PH express endothelin-1 (ET-1) at high levels in their lungs. As the activation of both types of ET-1 receptor (ETA and ETB) leads to increased generation of superoxide and hydrogen peroxide, this may contribute to the severe oxidative stress found in PH patients. As a number of pathways may induce oxidative stress, the particular role of ET-1 remains unclear. The aim of this study was to determine whether inhibition of ET-1 signaling could reduce pulmonary oxidative stress and attenuate the progression of disease in rats with occlusive-angioproliferative PH induced by a single dose of SU5416 (200 mg/kg) and subsequent exposure to hypoxia for 21 days. Using this regimen, animals developed severe PH as evidenced by a progressive increase in right-ventricle (RV) peak systolic pressure (RVPSP), severe RV hypertrophy, and pulmonary endothelial and smooth muscle cell proliferation, resulting in plexiform vasculopathy. PH rats also had increased oxidative stress, correlating with endothelial nitric oxide synthase uncoupling and NADPH oxidase activation, leading to enhanced protein nitration and increases in markers of vascular remodeling. Treatment with the combined ET receptor antagonist bosentan (250 mg/kg/day; day 10 to 21) prevented further increase in RVPSP and RV hypertrophy, decreased ETA/ETB protein levels, reduced oxidative stress and protein nitration, and resulted in marked attenuation of pulmonary vascular cell proliferation. We conclude that inhibition of ET-1 signaling significantly attenuates the oxidative and nitrosative stress associated with PH and prevents its progression.  相似文献   

8.
9.
The deleterious effects of oxidants on proteins may be modified by overexpression of uncoupling protein 3 (UCP3) in skeletal muscle cells exposed to hyperoxia or H2O2. UCP3 overexpression significantly attenuated the increase in protein carbonylation in response to hyperoxia and H2O2 exposures. However, antioxidant enzyme content and activity (superoxide dismutases, peroxiredoxins, glutathione peroxidase-I, and catalase) were reduced or not modified in UCP3-overexpressing myotubes exposed to oxidants. Protein nitration increased in UCP3-overexpressing cells exposed to hyperoxia, but not to H2O2. We conclude that protein oxidation rather than nitration is neutralized by UPC3 overexpression in mouse myotubes exposed to abundant reactive oxygen species.  相似文献   

10.
Osteoarthritis (OA) is one of the most common chronic diseases, with increasing importance due to increased life expectancy. On a cellular level, the pathophysiology of joint function impairment and ultimate destruction associated with OA remains poorly understood. Free radicals are highly reactive molecules involved in both normal intracellular signal transduction and degenerative cellular processes. An imbalance between the free radical burden and cellular scavenging mechanisms, defined as oxidative stress, has been identified as a relevant factor in OA pathogenesis. This literature review elucidates the involvement of nitrosative and oxidative stress in cellular ageing in joints, cell senescence, and apoptosis. Free radical exposure is known to promote cellular senescence and apoptosis, and the involvement of radical oxygen species (ROS) in inflammation, fibrosis control, and pain nociception has been proven. A relatively novel approach to OA pathophysiology considers the joint to be a dynamic system consisting of 3, continuously interacting compartments, cartilage, synovial tissue, and subchondral bone. Current knowledge concerning free radical involvement in paracrine signalling in OA is reviewed. The interrelationship between oxidative imbalances and OA pathophysiology may provide a novel approach to the comprehension, and therefore modification, of OA disease progression and symptom control.  相似文献   

11.
Nitric oxide (NO) has been shown to be a key bioregulatory agent in a wide variety of biological processes, yet cytotoxic properties have been reported as well. This dichotomy has raised the question of how this potentially toxic species can be involved in so many fundamental physiological processes. We have investigated the effects of NO on a variety of toxic agents and correlated how its chemistry might pertain to the observed biology. The results generate a scheme termed the chemical biology of NO in which the pertinent reactions can be categorized into direct and indirect effects. The former involves the direct reaction of NO with its biological targets generally at low fluxes of NO. Indirect effects are reactions mediated by reactive nitrogen oxide species, such as those generated from the NO/O2 and NO/O2- reactions, which can lead to cellular damage via nitrosation or oxidation of biological components. This report discusses several examples of cytotoxicity involved with these stresses.  相似文献   

12.
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.  相似文献   

13.
Diabetes mellitus (DM) is associated with increased production of reactive oxygen and nitrogen species; consequently, an increase in lipid peroxidation and a decrease in antioxidants resulting in mitochondrial dysfunction. Using a rat model of DM induced by streptozotocin, we show the opposite: an increase in NO levels, S-nitrosylation, aconitase activity, and total glutathione and a decrease in lipid peroxidation at early stages of diabetes. These data imply that the decrease in lipid peroxidation is a vital early response to hyperglycemia to prevent escalation of ROS generation in mitochondria. These results also suggest a need for novel therapeutic targets to prevent the neurological consequences of diabetes.  相似文献   

14.
Urinary biomarkers of oxidative stress have been little studied in adults with Down syndrome (DS), usually no more than two biomarkers have been measured in the population studied and controversial results are reported in literature. Thus, we aimed to assess a set of oxidative and nitrosative stress biomarkers in urine samples of adolescents and adults with DS, with and without hypothyroidism, which comprise: 8-hydroxy-2′-deoxyguanosine (8-OHdG), isoprostane 15-F2t-IsoP, thiobarbituric acid-reacting substances (TBARS), advanced glycation end products (AGEs), dityrosine (diTyr), hydrogen peroxide (H2O2) and nitrite/nitrate (NOx). Fluorimetric and spectrophotometric assays were performed in DS (n = 78), some of them taking levothyroxine for hypothyroidism (n = 24), and in their healthy age-matched controls (n = 65). We found that levels of AGEs, diTyr, H2O2 and NOx are increased in DS patients in any or in all age groups, whereas Cr levels were lower in DS than in controls in all age groups. Besides, correlations with age in DS were positive for diTyr and negative for Cr, TBARS, 15-F2t-IsoP and NOx. We also found lower levels of Cr from 15 to 19 years, higher levels of TBARS and AGEs from 20 to 40 years and higher levels of diTyr from 15 to 40 years in DS patients receiving levothyroxine than in DS without hypothyroidism diagnosed. We conclude that AGEs, diTyr, H2O2 and NOx could be used as oxidative stress biomarkers in DS in contrast to 8-OHdG, 15-F2t-IsoP and TBARS, at least with the methods used. However, renal impairment could occur in DS and Cr adjustment may bias the results, particularly in hypothyroid patients.  相似文献   

15.
Glutathione (GSH), the major cellular protectant against reactive oxygen and nitrogen species, is compartmentalized in a cytosolic (c) and a mitochondrial (mt) pool. We investigated how c-GSH and mt-GSH are differentially affected by endogenously produced nitric oxide (NO). Microglial cell line (N9) cultures were immunostimulated with lipopolysaccharide/interferon-gamma to elicit the inducible isoform of NO synthase (iNOS). Despite a significant reduction in total GSH, the mt-GSH remained nearly unaffected by iNOS-mediated NO production. To investigate possible consequences of GSH depletion on the mitochondrial membrane potential, we used buthionine sulfoximine (BSO) to reduce separately the c-GSH, whereas ethacrynic acid (EA) was applied to deplete both mt-GSH and c-GSH. The mitochondrial membrane potential was more vulnerable to NO exposure in EA-pretreated cultures than in BSO-pretreated cultures, indicated by a potentiated release of tetramethylrhodamine from mitochondria into the cytosol. To relate the EA-mediated decrease in mitochondrial membrane potential to the oxidant buildup after GSH depletion, we loaded the cells with the oxidant-sensitive fluorochrome 2',7'-dihydrodichlorofluorescein (DCF) diacetate. EA treatment caused an increase in DCF fluorescence over time that was potentiated when the iNOS expression was stimulated. Inhibition of NO production abolished this effect. We conclude that endogenous NO production in microglial cells does not compromise the mt-GSH pool which, in turn, might explain the ability of these cells to combat high-output NO production.  相似文献   

16.
Cisplatin is an important chemotherapeutic agent; however, its nephrotoxicity limits its clinical use. Enhanced inflammatory response and oxidative/nitrosative stress seem to play a key role in the development of cisplatin-induced nephropathy. Activation of cannabinoid-2 (CB2) receptors with selective agonists exerts anti-inflammatory and tissue-protective effects in various disease models. We have investigated the role of CB2 receptors in cisplatin-induced nephrotoxicity using the selective CB2 receptor agonist HU-308 and CB2 knockout mice. Cisplatin significantly increased inflammation (leukocyte infiltration, CXCL1/2, MCP-1, TNFα, and IL-1β levels) and expression of adhesion molecule ICAM-1 and superoxide-generating enzymes NOX2, NOX4, and NOX1 and enhanced ROS generation, iNOS expression, nitrotyrosine formation, and apoptotic and poly(ADP-ribose) polymerase-dependent cell death in the kidneys of mice, associated with marked histopathological damage and impaired renal function (elevated serum BUN and creatinine levels) 3 days after the administration of the drug. CB2 agonist attenuated the cisplatin-induced inflammatory response, oxidative/nitrosative stress, and cell death in the kidney and improved renal function, whereas CB2 knockouts developed enhanced inflammation and tissue injury. Thus, the endocannabinoid system, through CB2 receptors, protects against cisplatin-induced kidney damage by attenuating inflammation and oxidative/nitrosative stress, and selective CB2 agonists may represent a promising novel approach to preventing this devastating complication of chemotherapy.  相似文献   

17.
18.
19.
Kar S  Kavdia M 《PloS one》2012,7(6):e38912
Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O(2) (?-)) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O(2)(?-) and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O(2)(?-) and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O(2)(?-) and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ~0.6 fold, O(2)(?-) increased ~27 fold and peroxynitrite increased ~30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O(2)(?-) and peroxynitrite concentration in the lumen. The increased O(2) (?-) and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O(2)(?-) in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events.  相似文献   

20.
Reactive oxygen and nitrogen species (ROS and RNS) have been proposed as mechanisms of cancer-induced cachexia. In this study, we assessed using Western blot analysis the levels of total protein carbonylation (2,4-dinitrophenylhydrazine assay), both malondialdehyde- (MDA-) and 2-hydroxy-4-nonenal- (HNE-) protein adducts, Mn-superoxide dismutase (Mn-SOD), catalase, heme oxygenase-1 (HO-1) and 3-nitrotyrosine formation in gastrocnemius muscles of rats bearing the Yoshida AH-130 hepatoma. In the muscles of the tumour-bearing animals, protein carbonylation as measured by total levels of carbonyl group formation and both HNE and MDA-protein adducts, and protein tyrosine nitration were significantly greater than in control muscles. Protein levels of the antioxidant enzymes Mn-SOD, catalase, and HO-1 were not significantly modified in the rat cachectic muscles compared to controls. The inefficiency of the antioxidant enzymes in neutralizing excessive ROS production may account for elevated markers of protein oxidation and be responsible for the development of both oxidative and nitrosative stress in cancer-induced cachexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号