首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteric fever, caused by Salmonella enterica serovars Typhi and Paratyphi A (S. Typhi and S. Paratyphi A) remains a major public health problem in many settings. The disease is limited to locations with poor sanitation which facilitates the transmission of the infecting organisms. Efficacious and inexpensive vaccines are available for S. Typhi, yet are not commonly deployed to control the disease. Lack of vaccination is due partly to uncertainty of the disease burden arising from a paucity of epidemiological information in key locations. We have collected and analyzed data from 3,898 cases of blood culture-confirmed enteric fever from Patan Hospital in Lalitpur Sub-Metropolitan City (LSMC), between June 2005 and May 2009. Demographic data was available for a subset of these patients (n = 527) that were resident in LSMC and who were enrolled in trials. We show a considerable burden of enteric fever caused by S. Typhi (2,672; 68.5%) and S. Paratyphi A (1,226; 31.5%) at this Hospital over a four year period, which correlate with seasonal fluctuations in rainfall. We found that local population density was not related to incidence and we identified a focus of infections in the east of LSMC. With data from patients resident in LSMC we found that the median age of those with S. Typhi (16 years) was significantly less than S. Paratyphi A (20 years) and that males aged 15 to 25 were disproportionately infected. Our findings provide a snapshot into the epidemiological patterns of enteric fever in Kathmandu. The uneven distribution of enteric fever patients within the population suggests local variation in risk factors, such as contaminated drinking water. These findings are important for initiating a vaccination scheme and improvements in sanitation. We suggest any such intervention should be implemented throughout the LSMC area.  相似文献   

2.
One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley.  相似文献   

3.
Enteric fever, caused by Salmonella enterica, remains an unresolved public health problem in India and antimicrobial therapy is the main mode of treatment. The objective of this study was to characterize the Salmonella enterica isolates from Kolkata with respect to their antimicrobial resistance (AMR), virulence profiles and molecular subtypes. Salmonella enterica blood isolates were collected from clinically suspected enteric fever patients attending various hospitals in Kolkata, India from January 2009 to June 2013 and were tested for AMR profiles by standard protocols; for resistance gene transfer by conjugation; for resistance and virulence genes profiles by PCR; and for molecular subtypes by Pulsed Field Gel Electrophoresis (PFGE). A total of 77 Salmonella enterica serovar Typhi (S. Typhi) and 25 Salmonella enterica serovar Paratyphi A (S. Paratyphi A) from Kolkata were included in this study. Although multidrug resistance (resistance to chloramphenicol, ampicillin, co-trimoxazole) was decreasing in S. Typhi (18.2%) and absent in S. Paratyphi A, increased resistance to fluoroquinolone, the current drug of choice, caused growing concern for typhoid treatment. A single, non-conjugative non-IncHI1 plasmid of 180 kb was found in 71.4% multidrug resistant (MDR) S. Typhi; the remaining 28.6% isolates were without plasmid. Various AMR markers (bla TEM-1, catA, sul1, sul2, dfrA15, strA-strB) and class 1 integron with dfrA7 gene were detected in MDR S. Typhi by PCR and sequencing. Most of the study isolates were likely to be virulent due to the presence of virulence markers. Major diversity was not noticed among S. Typhi and S. Paratyphi A from Kolkata by PFGE. The observed association between AMR profiles and S. Typhi pulsotypes might be useful in controlling the spread of the organism by appropriate intervention. The study reiterated the importance of continuous monitoring of AMR and molecular subtypes of Salmonella isolates from endemic regions for better understanding of the disease epidemiology.  相似文献   

4.
Salmonella enterica serovars Typhi and Paratyphi A cause systemic infections in humans which are referred to as enteric fever. Multidrug-resistant (MDR) serovar Typhi isolates emerged in the 1980s, and in recent years MDR serovar Paratyphi A infections have become established as a significant problem across Asia. MDR in serovar Typhi is almost invariably associated with IncHI1 plasmids, but the genetic basis of MDR in serovar Paratyphi A has remained predominantly undefined. The DNA sequence of an IncHI1 plasmid, pAKU_1, encoding MDR in a serovar Paratyphi A strain has been determined. Significantly, this plasmid shares a common IncHI1-associated DNA backbone with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27. Plasmids pAKU_1 and pHCM1 share 14 antibiotic resistance genes encoded within similar mobile elements, which appear to form a 24-kb composite transposon that has transferred as a single unit into different positions into their IncHI1 backbones. Thus, these plasmids have acquired similar antibiotic resistance genes independently via the horizontal transfer of mobile DNA elements. Furthermore, two IncHI1 plasmids from a Vietnamese isolate of serovar Typhi were found to contain features of the backbone sequence of pAKU_1 rather than pHCM1, with the composite transposon inserted in the same location as in the pAKU_1 sequence. Our data show that these serovar Typhi and Paratyphi A IncHI1 plasmids share highly conserved core DNA and have acquired similar mobile elements encoding antibiotic resistance genes in past decades.  相似文献   

5.
Salmonella enterica serovar Typhi and serovar Paratyphi A with reduced susceptibility to fluoroquinolones (MICs of ciprofloxacin, 0.25 to 2 microg/ml) have a mutation at codon either Ser-83 or Asp-87 of gyrA gene. A screening method by PCR-restriction fragment length polymorphism (PCR-RFLP) was designed to screen the mutations at codon Ser-83 and Asp-87 of the gyrA gene of S. enterica serovar Typhi and serovar Paratyphi A clinical isolates. This method successfully screened the gyrA mutations of S. enterica serovar Typhi and serovar Paratyphi A with reduced susceptibility to fluoroquinolones.  相似文献   

6.

Background

Enteric fever, a systemic infection caused by the bacteria Salmonella Typhi and Salmonella Paratyphi A, is endemic in Kathmandu, Nepal. Previous work identified proximity to poor quality water sources as a community-level risk for infection. Here, we sought to examine individual-level risk factors related to hygiene and sanitation to improve our understanding of the epidemiology of enteric fever in this setting.

Methodology and principal findings

A matched case-control analysis was performed through enrollment of 103 blood culture positive enteric fever patients and 294 afebrile community-based age and gender-matched controls. A detailed questionnaire was administered to both cases and controls and the association between enteric fever infection and potential exposures were examined through conditional logistic regression. Several behavioral practices were identified as protective against infection with enteric fever, including water storage and hygienic habits. Additionally, we found that exposures related to poor water and socioeconomic status are more influential in the risk of infection with S. Typhi, whereas food consumption habits and migration play more of a role in risk of S. Paratyphi A infection.

Conclusions and significance

Our work suggests that S. Typhi and S. Paratyphi A follow different routes of infection in this highly endemic setting and that sustained exposure to both serovars probably leads to the development of passive immunity. In the absence of a polyvalent vaccine against S. Typhi and S. Paratyphi A, we advocate better systems for water treatment and storage, improvements in the quality of street food, and vaccination with currently available S. Typhi vaccines.  相似文献   

7.
Salmonella enterica serovar Typhi is the causative agent of typhoid fever, which causes nearly 21.7 million illnesses and 217,000 deaths globally. Herein, we describe the whole-genome sequence of the Salmonella Typhi strain ST0208, isolated from a sporadic case of typhoid fever in Kuala Lumpur, Malaysia. The whole-genome sequence and comparative genomics allow an in-depth understanding of the genetic diversity, and its link to pathogenicity and evolutionary dynamics, of this highly clonal pathogen that is endemic to Malaysia.  相似文献   

8.
Despite the increasing availability of typhoid vaccine in many regions, global estimates of mortality attributable to enteric fever appear stable. While both Salmonella enterica serovar Typhi (S. Typhi) and serovar Paratyphi (S. Paratyphi) cause enteric fever, limited data exist estimating the burden of S. Paratyphi, particularly in Asia and Africa.We performed a systematic review of both English and Chinese-language databases to estimate the regional burden of paratyphoid within Africa and Asia. Distinct from previous reviews of the topic, we have presented two separate measures of burden; both incidence and proportion of enteric fever attributable to paratyphoid. Included articles reported laboratory-confirmed Salmonella serovar classification, provided clear methods on sampling strategy, defined the age range of participants, and specified the time period of the study.A total of 64 full-text articles satisfied inclusion criteria and were included in the qualitative synthesis. Paratyphoid A was commonly identified as a cause of enteric fever throughout Asia. The highest incidence estimates in Asia came from China; four studies estimated incidence rates of over 150 cases/100,000 person-years. Paratyphoid A burden estimates from Africa were extremely limited and with the exception of Nigeria, few population or hospital-based studies from Africa reported significant Paratyphoid A burden.While significant gaps exist in the existing population-level estimates of paratyphoid burden in Asia and Africa, available data suggest that paratyphoid A is a significant cause of enteric fever in Asia. The high variability in documented incidence and proportion estimates of paratyphoid suggest considerable geospatial variability in the burden of paratyphoid fever. Additional efforts to monitor enteric fever at the population level will be necessary in order to accurately quantify the public health threat posed by S. Paratyphi A, and to improve the prevention and treatment of enteric fever.  相似文献   

9.
Salmonellosis, a communicable disease caused by members of the Salmonella species, transmitted to humans through contaminated food or water. It is of paramount importance, to generate accurate detection methods for discriminating the various Salmonella species that cause severe infection in humans, including S. Typhi and S. Paratyphi A. Here, we formulated a strategy of detection and differentiation of salmonellosis by a multiplex polymerase chain reaction assay using S. Typhi non-protein coding RNA (sRNA) genes. With the designed sequences that specifically detect sRNA genes from S. Typhi and S. Paratyphi A, a detection limit of up to 10 pg was achieved. Moreover, in a stool-seeding experiment with S. Typhi and S. Paratyphi A, we have attained a respective detection limit of 15 and 1.5 CFU/mL. The designed strategy using sRNA genes shown here is comparatively sensitive and specific, suitable for clinical diagnosis and disease surveillance, and sRNAs represent an excellent molecular target for infectious disease.  相似文献   

10.
A real-time PCR assay with the cycling probe method was used to detect mutations at codons 83 and 87 in the DNA gyrase A subunit encoded by gyrA in Salmonella enterica serovar Typhi and Paratyphi A clinical isolates. The susceptibility estimated from the results of the gyrA mutation assay was consistent with that identified by the culture method using an E-test. This assay allows rapid screening of S. enterica serovar Typhi and Paratyphi A with reduced susceptibility to ciprofloxacin.  相似文献   

11.

Background

Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms.

Methodology

Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers.

Principal findings

We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species.

Conclusions

The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.  相似文献   

12.
Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of the systemic disease typhoid fever. Transmission occurs via ingestion of contaminated food or water. S. Typhi is specific to humans, and no animal or environmental reservoirs are known. As the free-living amoeba Acanthamoeba castellanii is an environmental host for many pathogenic bacteria, this study investigates interactions between S. Typhi and A. castellanii by using cocultures. Growth of both organisms was estimated by cell count, viable count, flow cytometry, and fluorescence microscopy. Results indicate that S. Typhi can survive at least 3 weeks when grown with A. castellanii, as opposed to less than 10 days when grown as singly cultured bacteria under the same conditions. Interestingly, growth rates of amoebae after 14 days were similar in cocultures or when amoebae were singly cultured, suggesting that S. Typhi is not cytotoxic to A. castellanii. Bacteria surviving in coculture were not intracellular and did not require a physical contact with amoebae for their survival. These results suggest that S. Typhi may have a selective advantage when it is associated with A. castellanii and that amoebae may contribute to S. Typhi persistence in the environment.  相似文献   

13.
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a life-threatening human disease. The lack of animal models due to S. Typhi's strict human host specificity has hindered its study and vaccine development. We find that immunodeficient Rag2(-/-) γc(-/-) mice engrafted with human fetal liver hematopoietic stem and progenitor cells are able to support?S. Typhi replication and persistent infection. A?S. Typhi mutant in a gene required for virulence in humans was unable to replicate in these mice. Another mutant unable to produce typhoid toxin exhibited increased replication, suggesting a role for this toxin in the establishment of persistent infection. Furthermore, infected animals mounted human innate and adaptive immune responses to S. Typhi, resulting in the production of cytokines and pathogen-specific antibodies. We expect that this mouse model will be a useful resource for understanding S.?Typhi pathogenesis and for evaluating potential vaccine candidates against typhoid fever.  相似文献   

14.
The Salmonella enterica serovar Typhi CT18 (S.Typhi) chromosome harbours seven distinct prophage-like elements, some of which may encode functional bacteriophages. In silico analyses were used to investigate these regions in S.Typhi CT18, and ultimately compare these integrated bacteriophages against 40 other Salmonella isolates using DNA microarray technology. S.Typhi CT18 contains prophages that show similarity to the lambda, Mu, P2 and P4 bacteriophage families. When compared to other S.Typhi isolates, these elements were generally conserved, supporting a clonal origin of this serovar. However, distinct variation was detected within a broad range of Salmonella serovars; many of the prophage regions are predicted to be specific to S.Typhi. Some of the P2 family prophage analysed have the potential to carry non-essential "cargo" genes within the hyper-variable tail region, an observation that suggests that these bacteriophage may confer a level of specialisation on their host. Lysogenic bacteriophages therefore play a crucial role in the generation of genetic diversity within S.enterica.  相似文献   

15.
目的:比较伤寒沙门菌和甲型副伤寒沙门菌流行菌株的外膜蛋白谱差异。方法:运用二维蛋白电泳方法,对我国伤寒沙门菌株XJ90和甲型副伤寒沙门菌株JX2005-92在实验室通用营养条件下培养提取的外膜蛋白进行分离,比对其差异,对差异蛋白点进行质谱鉴定,对鉴定蛋白点的基因序列也进行比较。结果:菌株XJ90中发现20个特异蛋白点,质谱鉴定出16个;菌株JX2005-92中发现29个特异蛋白点,鉴定出18个。在这些蛋白中,OmpA是数目最多的同种差异蛋白。这些差异蛋白点中的大部分编码基因在2种细菌中序列高度相似或相同。结论:伤寒沙门菌和甲型副伤寒沙门菌基因序列高度相似的外膜蛋白具有不同的修饰形式,提示其不同遗传背景在相同的环境条件下表现出精细的功能差异。  相似文献   

16.
Systemic infections caused by Salmonella enterica are an ongoing public health problem especially in Sub-Saharan Africa. Essentially typhoid fever is associated with high mortality particularly because of the increasing prevalence of multidrug-resistant strains. Thus, a rapid blood-culture based bacterial species diagnosis including an immediate sub-differentiation of the various serovars is mandatory. At present, MALDI-TOF based intact cell mass spectrometry (ICMS) advances to a widely used routine identification tool for bacteria and fungi. In this study, we investigated the appropriateness of ICMS to identify pathogenic bacteria derived from Sub-Saharan Africa and tested the potential of this technology to discriminate S. enterica subsp. enterica serovar Typhi (S. Typhi) from other serovars. Among blood culture isolates obtained from a study population suffering from febrile illness in Ghana, no major misidentifications were observed for the species identification process, but serovars of Salmonella enterica could not be distinguished using the commercially available Biotyper database. However, a detailed analysis of the mass spectra revealed several serovar-specific biomarker ions, allowing the discrimination of S. Typhi from others. In conclusion, ICMS is able to identify isolates from a sub-Saharan context and may facilitate the rapid discrimination of the clinically and epidemiologically important serovar S. Typhi and other non-S. Typhi serovars in future implementations.  相似文献   

17.
Unlike the majority of Salmonella enterica serovars, Salmonella Typhi (S. Typhi), the etiological agent of human typhoid, is monophasic. S. Typhi normally harbours only the phase 1 flagellin gene (fliC), which encodes the H:d antigen. However, some S. Typhi strains found in Indonesia express an additional flagellin antigen termed H:z66. Molecular analysis of H:z66+ S. Typhi revealed that the H:z66 flagellin structural gene (fljB(z66)) is encoded on a linear plasmid that we have named pBSSB1. The DNA sequence of pBSSB1 was determined to be just over 27 kbp, and was predicted to encode 33 coding sequences. To our knowledge, pBSSB1 is the first non-bacteriophage-related linear plasmid to be described in the Enterobacteriaceae.  相似文献   

18.
BackgroundTyphoid fever, a systemic infection caused by Salmonella enterica serovar Typhi, remains a considerable public health threat in impoverished regions within many low- and middle-income settings. However, we still lack a detailed understanding of the emergence, population structure, molecular mechanisms of antimicrobial resistance (AMR), and transmission dynamics of S. Typhi across many settings, particularly throughout the Asia-Pacific islands. Here we present a comprehensive whole genome sequence (WGS) based overview of S. Typhi populations circulating in Papua New Guinea (PNG) over 30 years.Principle findingsBioinformatic analysis of 86 S. Typhi isolates collected between 1980–2010 demonstrated that the population structure of PNG is dominated by a single genotype (2.1.7) that appears to have emerged in the Indonesian archipelago in the mid-twentieth century with minimal evidence of inter-country transmission. Genotypic and phenotypic data demonstrated that the PNG S. Typhi population appears to be susceptible to former first line drugs for treating typhoid fever (chloramphenicol, ampicillin and co-trimoxazole), as well as fluoroquinolones, third generation cephalosporins, and macrolides. PNG genotype 2.1.7 was genetically conserved, with very few deletions, and no evidence of plasmid or prophage acquisition. Genetic variation among this population was attributed to either single point mutations, or homologous recombination adjacent to repetitive ribosomal RNA operons.SignificanceAntimicrobials remain an effective option for the treatment of typhoid fever in PNG, along with other intervention strategies including improvements to water, sanitation and hygiene (WaSH) related infrastructure and potentially the introduction of Vi-conjugate vaccines. However, continued genomic surveillance is warranted to monitor for the emergence of AMR within local populations, or the introduction of AMR associated genotypes of S. Typhi in this setting.  相似文献   

19.
Unlike other Salmonella , which can infect a broad range of hosts causing self‐limiting infection , Salmonella Typhi is an exclusively human pathogen that causes typhoid fever, a life‐threatening systemic disease. Typhoid toxin is a unique virulence factor of Salmonella Typhi, which is expressed when the bacteria are within mammalian cells. Here, we report that an N ‐acetyl‐β‐D ‐muramidase similar to phage endolysins encoded within the same pathogenicity islet as the toxin is required for typhoid toxin secretion. Genetic and functional analysis of TtsA revealed unique amino acids at its predicted peptidoglycan‐binding domain that are essential for protein secretion and that distinguishes this protein from other homologues. We propose that TtsA defines a new protein secretion mechanism recently evolved from the machine that mediates phage release.  相似文献   

20.
Vi capsular polysaccharide production is encoded by the viaB locus, which has a limited distribution in Salmonella enterica serovars. In S. enterica serovar Typhi, viaB is encoded on a 134-kb pathogenicity island known as SPI-7 that is located between partially duplicated tRNA(pheU) sites. Functional and bioinformatic analysis suggests that SPI-7 has a mosaic structure and may have evolved as a consequence of several independent insertion events. Analysis of viaB-associated DNA in Vi-positive S. enterica serovar Paratyphi C and S. enterica serovar Dublin isolates revealed the presence of similar SPI-7 islands. In S. enterica serovars Paratyphi C and Dublin, the SopE bacteriophage and a 15-kb fragment adjacent to the intact tRNA(pheU) site were absent. In S. enterica serovar Paratyphi C only, a region encoding a type IV pilus involved in the adherence of S. enterica serovar Typhi to host cells was missing. The remainder of the SPI-7 islands investigated exhibited over 99% DNA sequence identity in the three serovars. Of 30 other Salmonella serovars examined, 24 contained no insertions at the equivalent tRNA(pheU) site, 2 had a 3.7-kb insertion, and 4 showed sequence variation at the tRNA(pheU)-phoN junction, which was not analyzed further. Sequence analysis of the SPI-7 region from S. enterica serovar Typhi strain CT18 revealed significant synteny with clusters of genes from a variety of saprophytic bacteria and phytobacteria, including Pseudomonas aeruginosa and Xanthomonas axonopodis pv. citri. This analysis suggested that SPI-7 may be a mobile element, such as a conjugative transposon or an integrated plasmid remnant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号