首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct UV cross-linking combined with mass spectrometry (MS) is a powerful tool to identify hitherto non-characterized protein–RNA contact sites in native ribonucleoprotein particles (RNPs) such as the spliceosome. Identification of contact sites after cross-linking is restricted by: (i) the relatively low cross-linking yield and (ii) the amount of starting material available for cross-linking studies. Therefore, the most critical step in such analyses is the extensive purification of the cross-linked peptide–RNA heteroconjugates from the excess of non-crosslinked material before MS analysis. Here, we describe a strategy that combines small-scale reversed-phase liquid chromatography (RP-HPLC) of UV-irradiated and hydrolyzed RNPs, immobilized metal-ion affinity chromatography (IMAC) to enrich cross-linked species and their analysis by matrix-assisted laser desorption/ionisation (MALDI) MS(/MS). In cases where no MS/MS analysis can be performed, treatment of the enriched fractions with alkaline phosphatase leads to unambiguous identification of the cross-linked species.

We demonstrate the feasibility of this strategy by MS analysis of enriched peptide–RNA cross-links from UV-irradiated reconstituted [15.5K-61K-U4atacsnRNA] snRNPs and native U1snRNPs. Applying our approach to a partial complex of U2snRNP allowed us to identify the contact site between the U2snRNP-specific protein p14/SF3b14a and the branch-site interacting region (BSiR) of U2snRNA.

  相似文献   

2.
We describe a novel approach to identify RNA-protein cross-linking sites within native small nuclear ribonucleoprotein (snRNP) particles from HeLa cells. It combines immunoprecipitation of the UV-irradiated particles under semi-denaturing conditions with primer extension analysis of the cross-linked RNA moiety. In a feasibility study, we initially identified the exact cross-linking sites of the U1 70-kDa (70K) protein in stem-loop I of U1 small nuclear RNA (snRNA) within purified U1 snRNPs and then confirmed the results by a large-scale preparation that allowed N-terminal sequencing and matrix-assisted laser desorption ionization mass spectrometry of purified cross-linked peptide-oligonucleotide complexes. We identified Tyr(112) and Leu(175) within the RNA-binding domain of the U1 70K protein to be cross-linked to G(28) and U(30) in stem-loop I, respectively. We further applied our immunoprecipitation approach to HeLa U5 snRNP, as part of purified 25 S U4/U6.U5 tri-snRNPs. Cross-linking sites between the U5-specific 220-kDa protein (human homologue of Prp8p) and the U5 snRNA were located at multiple nucleotides within the highly conserved loop 1 and at one site in internal loop 1 of U5 snRNA. The cross-linking of four adjacent nucleotides indicates an extended interaction surface between loop 1 and the 220-kDa protein. In summary, our approach provides a rapid method for identification of RNA-protein contact sites within native snRNP particles as well as other ribonucleoprotein particles.  相似文献   

3.
The major small nuclear ribonucleoproteins (snRNPs) U1, U2, U5 and U4/U6 participate in the splicing of pre-mRNA. U1, U2, U4 and U5 RNAs share a highly conserved sequence motif PuA(U)nGPu, termed the Sm site, which is normally flanked by two hairpin loops. The Sm site provides the major binding site for the group of common proteins, B', B, D1, D2, D3, E, F and G, which are shared by the spliceosomal snRNPs. We have investigated the ability of common snRNP proteins to recognize the Sm site of snRNA by using ultraviolet light-induced RNA-protein cross-linking within U1 snRNP particles. The U1 snRNP particles, reconstituted in vitro, contained U1 snRNA labelled with 32P. Cross-linking of protein to this U1 snRNA occurred only in the presence of the single-stranded stretch of snRNA that makes up the conserved Sm site. Characterization of the cross-linked protein by one and two-dimensional gel electrophoresis indicated that snRNP protein G had become cross-linked to the U1 snRNA. This was confirmed by specific immunoprecipitation of the cross-linked RNA-protein complex with an anti-G antiserum. The cross-link was located on the U1 snRNA by fingerprint analysis with RNases T1 and A; this demonstrated that the protein G has been cross-linked to the AAU stretch within the 5'-terminal half of the Sm site (AAUUUGUGG). These results suggest that the snRNP protein G may be involved in the direct recognition of the Sm site.  相似文献   

4.
The 17S U2 snRNP plays an essential role in branch point selection and catalysis during pre-mRNA splicing. Much remains to be learned about the molecular architecture of the U2 snRNP, including which proteins contact the functionally important 5' end of the U2 snRNA. Here, RNA-protein interactions within immunoaffinity-purified human 17S U2 snRNPs were analyzed by lead(II)-induced RNA cleavage and UV cross-linking. Contacts between the U2 snRNA and SF3a60, SF3b49, SF3b14a/p14 and SmG and SmB were detected. SF3b49 appears to make multiple contacts, interacting with the 5' end of U2 and nucleotides in loops I and IIb. SF3a60 also contacted different regions of the U2 snRNA, including the base of stem-loop I and a bulge in stem-loop III. Consistent with it contacting the pre-mRNA branch point adenosine, SF3b14a/p14 interacted with the U2 snRNA near the region that base pairs with the branch point sequence. A comparison of U2 cross-linking patterns obtained with 17S U2 snRNP versus purified spliceosomal A and B complexes revealed that RNA-protein interactions with stem-loop I and the branch site-interacting region of U2 are dynamic. These studies provide important insights into the molecular architecture of 17S U2 snRNPs and reveal U2 snRNP remodeling events during spliceosome assembly.  相似文献   

5.
A Woppmann  J Rinke    R Lührmann 《Nucleic acids research》1988,16(23):10985-11004
Protein-RNA interactions in small nuclear ribonucleoproteins (UsnRNPs) from HeLa cells were investigated by irradiation of purified nucleoplasmic snRNPs U1 to U6 with UV light at 254 nm. The cross-linked proteins were analyzed on one- and two-dimensional gel electrophoresis systems, and the existence of a stable cross-linkage was demonstrated by isolating protein-oligonucleotide complexes from snRNPs containing 32P-labelled snRNAs after exhaustive digestion with a mixture of RNases of different specificities. The primary target of the UV-light induced cross-linking reaction between protein and RNA was protein F. It was also found to be cross-linked to U1 snRNA in purified U1 snRNPs. Protein F is known to be one of the common snRNP proteins, which together with D, E and G protect a 15-25 nucleotide long stretch of snRNAs U1, U2, U4 and U5, the so-called domain A or Sm binding site against nuclease digestion (Liautard et al., 1982). It is therefore likely that the core-protein may bind directly and specifically to the common snRNA domain A, or else to a sub-region of this. The second protein which was demonstrated to be cross-linked to snRNA was the U1 specific protein 70K. Since it has been shown that binding of protein 70K to U1 RNP requires the presence of the 5' stem and loop of U1 RNA (Hamm et al., 1987) it is likely that the 70K protein directly interacts with a sub-region of the first stem loop structure.  相似文献   

6.
Mass spectrometry allows the elucidation of molecular details of the interaction domains of the individual components in macromolecular complexes subsequent to cross-linking of the individual components. Here, we applied chemical and UV cross-linking combined with tandem mass-spectrometric analysis to identify contact sites of the nuclear import adaptor snurportin 1 to the small ribonucleoprotein particle U1 snRNP in addition to the known interaction of m3G cap and snurportin 1. We were able to define previously unknown sites of protein–protein and protein–RNA interactions on the molecular level within U1 snRNP. We show that snurportin 1 interacts with its central m3G-cap-binding domain with Sm proteins and with its extreme C-terminus with stem-loop III of U1 snRNA. The crosslinking data support the idea of a larger interaction area between snurportin 1 and U snRNPs and the contact sites identified prove useful for modeling the spatial arrangement of snurportin 1 domains when bound to U1 snRNP. Moreover, this suggests a functional nuclear import complex that assembles around the m3G cap and the Sm proteins only when the Sm proteins are bound and arranged in the proper orientation to the cognate Sm site in U snRNA.  相似文献   

7.
Secondary structures for all five spliceosomal small nuclear (sn) RNAs (U1, U2, U4, U5, and U6 snRNAs) have been derived from phylogenetic, biochemical, and genetic data, but tertiary structure information has been more difficult to obtain. Here we have used the general cross-linking reagent nitrogen mustard (bis-(2-chloroethyl)methylamine) to explore the tertiary conformation of naked U1 snRNA. We detected two intramolecularly cross-linked U1 species (X-U1#1 and X-U1#2) after cross-linking of deproteinized HeLa nuclear extract. We determined the cross-linked sites and found that X-U1#1 is cross-linked between the C82-A85 and U129, while X-U1#2 is cross-linked between U105-G108 and A118. We then tested the ability of these two cross-linked species to bind small nuclear ribonucleo-protein (snRNP) proteins in vitro (in HeLa nuclear extract or S100) and in vivo (in Xenopus oocytes). Both X-U1#1 and X-U1#2 were found to reconstitute efficiently in vitro and in vivo, as judged by immunoprecipitation with antibodies specific for Sm and U1-specific proteins. Our data suggest that (i) the Sm-binding site lies on the surface of the native U1 snRNP, since the cross-link in X-U1#1 involves the Sm-binding site but does not block snRNP assembly, and (ii) U1 snRNA may adopt the correct tertiary conformation even in the absence of U1 snRNP proteins.  相似文献   

8.
A procedure is described for the purification of the individual major small nuclear ribonucleoproteins (snRNPs) U1, U2, U5 and U4/U6 from HeLa cells. The salient feature of the method is the combined usage of antibodies against 2,2,7-trimethylguanosine (m3G) and 6-methyladenosine (m6A) for differential immune affinity chromatography of the snRNPs. While anti-m3G affinity columns allow the separation of snRNPs U1, U2 and U5 from U4/U6 RNPs, anti-m6A antibodies selectively react with snRNPs U2 and U4/U6. Our technique further incorporates immune affinity chromatography of snRNPs with antibodies against snRNP proteins in addition to ion exchange chromatography. The procedure avoids the usage of denaturing agents, so as to maintain the native structure of the particles. This is mainly provided for by the possibility of eluting the anti-m3G and anti-m6A bound snRNPs with excess of the respective nucleosides. We have so far identified 12 polypeptides as constituents of the major snRNPs U1 to U6. Seven proteins of approximate mol. wts 29 kd (B'), 28 kd (B), 16 kd (D), 15.5 kd (D'), 12 kd (E), 11 kd (F) and 9 kd (G) were present in each of the individual snRNPs U1, U2, U5 and U4/U6. In addition to the common proteins, U1 RNPs contain three unique polypeptides of mol. wts 70 kd, 34 kd (A) and 22 kd (C). U2 RNPs are characterized by the presence of a 33-kd and a 28.5-kd protein, denoted A' and B". We could not detect any unique polypeptide confined to the purified snRNPs U5 or U4/U6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Nuclear mRNA precursors are spliced by a large macromolecular complex called the spliceosome which contains, in most eucaryotes, five small nuclear RNAs (snRNAs) each in the form of a small ribonucleoprotein particle (the U1, U2, U5, and U4/U6 snRNPs). Although secondary structures have been derived for all five spliceosomal snRNAs based on phylogenetic, biochemical, and genetic data, little tertiary structure information is available. Here we use the general cross-linking reagent nitrogen mustard [bis-(2-chloroethyl)methylamine] to detect tertiary interactions within U2 snRNA. After the cross-linking of deproteinized HeLa nuclear extract, two intramolecularly cross-linked U2 species with anomalous electrophoretic mobility can be detected (X-U2#1 and X-U2#2). The 3' and 5' boundaries of each cross-link were determined by rapid enzymatic RNA sequencing of end-labeled RNA. X-U2#1 is cross-linked between the region U41-U55 and G105 or G106, X-U2#2 between U53 and G97 or G98. We then tested the ability of the two cross-linked species to bind snRNP proteins in vitro (in nuclear extract or S100) and in vivo (in Xenopus oocytes). X-U2#2 reconstituted efficiently both in vitro and in vivo but X-U2#1 did not, as judged by immunoprecipitation with antibodies specific for Sm- and U2-specific proteins. Since the cross-link in X-U2#2 involves the Sm binding site but does not block snRNP assembly, our data strongly suggest that the Sm binding site lies on the surface of the native snRNP.  相似文献   

10.
Protein-RNA cross-linking combined with mass spectrometry is a powerful tool to elucidate hitherto non-characterized protein-RNA contacts in ribonucleoprotein particles, as, for example, within spliceosomes. Here, we describe an improved methodology for the sequence analysis of purified peptide-RNA oligonucleotide cross-links that is based solely on MALDI-ToF mass spectrometry. The utility of this methodology is demonstrated on cross-links isolated from UV-irradiated spliceosomal particles; these were (1) [15.5K-61 K-U4 atac] small nuclear ribonucleoprotein (snRNP) particles prepared by reconstitution in vitro, and (2) U1 snRNP particles purified from HeLa cells. We show that the use of 2',4',6'-trihydroxyacetophenone (THAP) as MALDI matrix allows analysis of cross-linked peptide-RNA oligonucleotides in the reflectron mode at high resolution, enabling sufficient accuracy to assign unambiguously cross-linked RNA sequences. Most important, post-source decay (PSD) analysis under these conditions was successfully applied to obtain sequence information about the cross-linked peptide and RNA moieties within a single spectrum, including the identification of the actual cross-linking site. Thus, in U4 atac snRNA we identified His 270 in the spliceosomal U4/U6 snRNP-specific protein 61 K (hPrp31p) cross-linked to U 44; in the U1 snRNP we show that Leu175 of the U1 snRNP-specific 70K protein is cross-linked to U 30 of U1 snRNA. This type of analysis is applicable to any type of RNP complex and may be expected to pave the way for the further analysis of protein-RNA complexes in much lower abundance and/or of cross-links that are obtained in low yield.  相似文献   

11.
U7 snRNPs were isolated from HeLa cells by biochemical fractionation, followed by affinity purification with a biotinylated oligonucleotide complementary to U7 snRNA. Purified U7 snRNPs lack the Sm proteins D1 and D2, but contain additional polypeptides of 14, 50 and 70 kDa. Microsequencing identified the 14 kDa polypeptide as a new Sm-like protein related to Sm D1 and D3. Like U7 snRNA, this protein, named Lsm10, is enriched in Cajal bodies of the cell nucleus. Its incorporation into U7 snRNPs is largely dictated by the special Sm binding site of U7 snRNA. This novel type of Sm complex, composed of both conventional Sm proteins and the Sm-like Lsm10, is most likely to be important for U7 snRNP function and subcellular localization.  相似文献   

12.
Prp8 stands out among hundreds of splicing factors as a protein that is intimately involved in spliceosomal activation and the catalytic reaction. Here, we present the first comprehensive in vivo RNA footprints for Prp8 in budding yeast obtained using CLIP (cross-linking and immunoprecipitation)/CRAC (cross-linking and analyses of cDNAs) and next-generation DNA sequencing. These footprints encompass known direct Prp8-binding sites on U5, U6 snRNA and intron-containing pre-mRNAs identified using site-directed cross-linking with in vitro assembled small nuclear ribonucleoproteins (snRNPs) or spliceosome. Furthermore, our results revealed novel Prp8-binding sites on U1 and U2 snRNAs. We demonstrate that Prp8 directly cross-links with U2, U5 and U6 snRNAs and pre-mRNA in purified activated spliceosomes, placing Prp8 in position to bring the components of the active site together. In addition, disruption of the Prp8 and U1 snRNA interaction reduces tri-snRNP level in the spliceosome, suggesting a previously unknown role of Prp8 in spliceosomal assembly through its interaction with U1 snRNA.  相似文献   

13.
The U1 small nuclear (sn)RNA participates in splicing of pre-mRNAs by recognizing and binding to 5′ splice sites at exon/intron boundaries. U1 snRNAs associate with 5′ splice sites in the form of ribonucleoprotein particles (snRNPs) that are comprised of the U1 snRNA and 10 core components, including U1A, U1-70K, U1C and the ‘Smith antigen’, or Sm, heptamer. The U1 snRNA is highly conserved across a wide range of taxa; however, a number of reports have identified the presence of expressed U1-like snRNAs in multiple species, including humans. While numerous U1-like molecules have been shown to be expressed, it is unclear whether these variant snRNAs have the capacity to form snRNPs and participate in splicing. The purpose of the present study was to further characterize biochemically the ability of previously identified human U1-like variants to form snRNPs and bind to U1 snRNP proteins. A bioinformatics analysis provided support for the existence of multiple expressed variants. In vitro gel shift assays, competition assays, and immunoprecipitations (IPs) revealed that the variants formed high molecular weight assemblies to varying degrees and associated with core U1 snRNP proteins to a lesser extent than the canonical U1 snRNA. Together, these data suggest that the human U1 snRNA variants analyzed here are unable to efficiently bind U1 snRNP proteins. The current work provides additional biochemical insights into the ability of the variants to assemble into snRNPs.  相似文献   

14.
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.  相似文献   

15.
Previous UV cross-linking studies demonstrated that, upon integration of the U2 snRNP into the spliceosome, a 14 kDa protein (p14) interacts directly with the branch adenosine, the nucleophile for the first transesterification step of splicing. We have identified the cDNA encoding this protein by microsequencing a 14 kDa protein isolated from U2-type spliceosomes. This protein contains an RNA recognition motif and is highly conserved across species. Antibodies raised against this cDNA-encoded protein precipitated the 14 kDa protein cross-linked to the branch adenosine, confirming the identity of the p14 cDNA. A combination of immunoblotting, protein microsequencing and immunoprecipitation revealed that p14 is a component of both 17S U2 and 18S U11/U12 snRNPs, suggesting that it contributes to the interaction of these snRNPs with the branch sites of U2- and U12-type pre-mRNAs, respectively. p14 was also shown to be a subunit of the heteromeric splicing factor SF3b and to interact directly with SF3b155. Immuno precipitations indicated that p14 is present in U12-type spliceosomes, consistent with the idea that branch point selection is similar in the major and minor spliceosomes.  相似文献   

16.
17.
An in vitro reconstitution/splicing complementation system has been developed which has allowed the investigation of the role of mammalian U2 and U5 snRNP components in splicing. U2 or U5 snRNP cores are first reconstituted from purified native snRNP core proteins and snRNA in the absence of cellular extract and are subsequently added to splicing extracts depleted of either U2 or U5 snRNP. When snRNPs reconstituted with HeLa U2 or U5 snRNA were added to U2- or U5-depleted nuclear extract, splicing was complemented. Addition of naked snRNA, on the other hand, did not restore splicing, demonstrating that the core proteins are essential for both U2 and U5 snRNP functions in splicing. Hybrid U2 or U5 snRNPs, reconstituted with core proteins isolated from U1 or U2 snRNPs, were equally active in splicing complementation, indicating that the snRNP core proteins are functionally interchangeable. U5 snRNPs reconstituted from in vitro transcribed U5 snRNA restored splicing to a level identical to that observed with particles reconstituted from authentic HeLa U5 snRNA. In contrast, splicing could not be restored to U2-depleted extract by the addition of snRNPs reconstituted from synthetic U2 snRNA, suggesting that U2 snRNA base modifications are essential for U2 snRNP function.  相似文献   

18.
U6 snRNA sequences required for assembly of U4/U6 snRNP and splicing complexes were determined by in vitro reconstitution of snRNPs. Both mutagenesis and chemical modification/interference assays identify a U6 snRNA domain required for U4/U6 snRNP formation. The results support the existence of a U4/U6 snRNA interaction domain previously proposed on the basis of phylogenetic evidence. In addition, two short U6 snRNA regions flanking the U4/U6 interaction domain are essential to assemble the U4/U6 snRNP into splicing complexes. These two regions may represent binding sites for splicing factors or may facilitate the formation of an alternative U6 snRNA secondary structure during spliceosome assembly.  相似文献   

19.
Several lines of evidences indicate that U1 and U2 snRNPs become interacting during pre-mRNA splicing. Here we present data showing that an U1-U2 snRNPs interaction can be mediated by an RNA only containing the consensus 5' splice site of all of the sequences characteristic of pre-mRNAs. Using monospecific antibodies (anti-(U1) RNP and anti-(U2) RNP), we have found that a tripartite complex comprising U1 and U2 snRNPs is immunoprecipitated in the presence of a consensus 5' splice site containing RNA, either from a crude extract or from an artificial mixture enriched in U1 and U2 snRNPs. This complex does not appear in the presence of an RNA lacking the sequence complementary to the 5' terminus of U1 snRNA. Moreover, RNAse T1 protection coupled to immunoprecipitation experiments have demonstrated that only the 5' end sequence of U1 snRNA contacts the consensus 5' splice site containing RNA, arguing that U2 snRNP binding in the tripartite complex is mediated by U1 snRNP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号