首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATP-sensitive K-channel (K-ATP channel) plays a key role in insulin secretion from pancreatic beta-cells. It is closed by glucose metabolism, which stimulates insulin secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and Mg-ADP, which inhibit and potentiate channel activity, respectively. The beta-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. We have mutated (independently or together) two lysine residues in the Walker A (W(A)) motifs of the first (K719A) and second (K1384M) nucleotide-binding domains (NBDs) of SUR1. These mutations are expected to inhibit nucleotide hydrolysis. Our results indicate that the W(A) lysine of NBD1 (but not NBD2) is essential for activation of K-ATP currents by diazoxide. The potentiatory effects of Mg-ADP required the presence of the W(A) lysines in both NBDs. Mutant currents were slightly more sensitive to ATP than wild-type currents. Metabolic inhibition led to activation of wild-type and K1384M currents, but not K719A or K719A/K1384M currents, suggesting that there may be a factor in addition to ATP and ADP which regulates K-ATP channel activity.  相似文献   

2.
ATP-sensitive K(+) (K(ATP)) channels, comprised of pore-forming Kir6.2 and regulatory SUR1 subunits, play a critical role in regulating insulin secretion. Binding of ATP to Kir6.2 inhibits, whereas interaction of MgATP with SUR1 activates, K(ATP) channels. We tested the functional effects of two Kir6.2 mutations (Y330C, F333I) that cause permanent neonatal diabetes mellitus, by heterologous expression in Xenopus oocytes. Both mutations reduced ATP inhibition and increased whole-cell currents, which in pancreatic beta-cells is expected to reduce insulin secretion and precipitate diabetes. The Y330C mutation reduced ATP inhibition both directly, by impairing ATP binding (and/or transduction), and indirectly, by stabilizing the intrinsic open state of the channel. The F333I mutation altered ATP binding/transduction directly. Both mutations also altered Kir6.2/SUR1 interactions, enhancing the stimulatory effect of MgATP (which is mediated via SUR1). This effect was particularly dramatic for the Kir6.2-F333I mutation, and was abolished by SUR1 mutations that prevent MgATP binding/hydrolysis. Further analysis of F333I heterozygous channels indicated that at least three SUR1 must bind/hydrolyse MgATP to open the mutant K(ATP) channel.  相似文献   

3.
ATP-sensitive potassium (K(ATP)) channels are inhibited by intracellular ATP and activated by ADP. Nutrient oxidation in beta-cells leads to a rise in [ATP]-to-[ADP] ratios, which in turn leads to reduced K(ATP) channel activity, depolarization, voltage-dependent Ca(2+) channel activation, Ca(2+) entry, and exocytosis. Persistent hyperinsulinemic hypoglycemia of infancy (HI) is a genetic disorder characterized by dysregulated insulin secretion and, although rare, causes severe mental retardation and epilepsy if left untreated. The last five or six years have seen rapid advance in understanding the molecular basis of K(ATP) channel activity and the molecular genetics of HI. In the majority of cases for which a genotype has been uncovered, causal HI mutations are found in one or the other of the two genes, SUR1 and Kir6.2, that encode the K(ATP) channel. This article will review studies that have defined the link between channel activity and defective insulin release and will consider implications for future understanding of the mechanisms of control of insulin secretion in normal and diseased states.  相似文献   

4.
The inwardly rectifying potassium channel Kir6.2 is the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, which controls insulin secretion by coupling glucose metabolism to membrane potential in beta-cells. Loss of channel function because of mutations in Kir6.2 or its associated regulatory subunit, sulfonylurea receptor 1, causes congenital hyperinsulinism (CHI), a neonatal disease characterized by persistent insulin secretion despite severe hypoglycemia. Here, we report a novel K(ATP) channel gating defect caused by CHI-associated Kir6.2 mutations at arginine 301 (to cysteine, glycine, histidine, or proline). These mutations in addition to reducing channel expression at the cell surface also cause rapid, spontaneous current decay, a gating defect we refer to as inactivation. Based on the crystal structures of Kir3.1 and KirBac1.1, Arg-301 interacts with several residues in the neighboring Kir6.2 subunit. Mutation of a subset of these residues also induces channel inactivation, suggesting that the disease mutations may cause inactivation by disrupting subunit-subunit interactions. To evaluate the effect of channel inactivation on beta-cell function, we expressed an alternative inactivation mutant R301A, which has equivalent surface expression efficiency as wild type channels, in the insulin-secreting cell line INS-1. Mutant expression resulted in more depolarized membrane potential and elevated insulin secretion at basal glucose concentration (3 mm) compared with cells expressing wild type channels, demonstrating that the inactivation gating defect itself is sufficient to cause loss of channel function and hyperinsulinism. Our studies suggest the importance of Kir6.2 subunit-subunit interactions in K(ATP) channel gating and function and reveal a novel gating defect underlying CHI.  相似文献   

5.
The pancreatic ATP-sensitive potassium (K(ATP)) channel consisting of four inwardly rectifying potassium channel 6.2 (Kir6.2) and four sulfonylurea receptor SUR1 subunits plays a key role in insulin secretion by linking glucose metabolism to membrane excitability. Syntaxin 1A (Syn-1A) is a plasma membrane protein important for membrane fusion during exocytosis of insulin granules. Here, we show that Syn-1A and K(ATP) channels endogenously expressed in the insulin-secreting cell INS-1 interact. Upregulation of Syn-1A by overexpression in INS-1 leads to a decrease, whereas downregulation of Syn-1A by small interfering RNA (siRNA) leads to an increase, in surface expression of K(ATP) channels. Using COSm6 cells as a heterologous expression system for mechanistic investigation, we found that Syn-1A interacts with SUR1 but not Kir6.2. Furthermore, Syn-1A decreases surface expression of K(ATP) channels via two mechanisms. One mechanism involves accelerated endocytosis of surface channels. The other involves decreased biogenesis and processing of channels in the early secretory pathway. This regulation is K(ATP) channel specific as Syn-1A has no effect on another inward rectifier potassium channel Kir3.1/3.4. Our results demonstrate that in addition to a previously documented role in modulating K(ATP) channel gating, Syn-1A also regulates K(ATP) channel expression in β-cells. We propose that physiological or pathological changes in Syn-1A expression may modulate insulin secretion by altering glucose-secretion coupling via changes in K(ATP) channel expression.  相似文献   

6.
The pancreatic ATP-sensitive potassium (K(ATP)) channel, a complex of four sulfonylurea receptor 1 (SUR1) and four potassium channel Kir6.2 subunits, regulates insulin secretion by linking metabolic changes to beta-cell membrane potential. Sulfonylureas inhibit K(ATP) channel activities by binding to SUR1 and are widely used to treat type II diabetes. We report here that sulfonylureas also function as chemical chaperones to rescue K(ATP) channel trafficking defects caused by two SUR1 mutations, A116P and V187D, identified in patients with congenital hyperinsulinism. Sulfonylureas markedly increased cell surface expression of the A116P and V187D mutants by stabilizing the mutant SUR1 proteins and promoting their maturation. By contrast, diazoxide, a potassium channel opener that also binds SUR1, had no effect on surface expression of either mutant. Importantly, both mutant channels rescued to the cell surface have normal ATP, MgADP, and diazoxide sensitivities, demonstrating that SUR1 harboring either the A116P or the V187D mutation is capable of associating with Kir6.2 to form functional K(ATP) channels. Thus, sulfonylureas may be used to treat congenital hyperinsulinism caused by certain K(ATP) channel trafficking mutations.  相似文献   

7.
Physiological and pathophysiological roles of ATP-sensitive K+ channels   总被引:32,自引:0,他引:32  
ATP-sensitive potassium (K(ATP)) channels are present in many tissues, including pancreatic islet cells, heart, skeletal muscle, vascular smooth muscle, and brain, in which they couple the cell metabolic state to its membrane potential, playing a crucial role in various cellular functions. The K(ATP) channel is a hetero-octamer comprising two subunits: the pore-forming subunit Kir6.x (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptor SUR (SUR1 or SUR2). Kir6.x belongs to the inward rectifier K(+) channel family; SUR belongs to the ATP-binding cassette protein superfamily. Heterologous expression of differing combinations of Kir6.1 or Kir6.2 and SUR1 or SUR2 variant (SUR2A or SUR2B) reconstitute different types of K(ATP) channels with distinct electrophysiological properties and nucleotide and pharmacological sensitivities corresponding to the various K(ATP) channels in native tissues. The physiological and pathophysiological roles of K(ATP) channels have been studied primarily using K(ATP) channel blockers and K(+) channel openers, but there is no direct evidence on the role of the K(ATP) channels in many important cellular responses. In addition to the analyses of naturally occurring mutations of the genes in humans, determination of the phenotypes of mice generated by genetic manipulation has been successful in clarifying the function of various gene products. Recently, various genetically engineered mice, including mice lacking K(ATP) channels (knockout mice) and mice expressing various mutant K(ATP) channels (transgenic mice), have been generated. In this review, we focus on the physiological and pathophysiological roles of K(ATP) channels learned from genetic manipulation of mice and naturally occurring mutations in humans.  相似文献   

8.
ATP-sensitive potassium (K(ATP)) channels mediate glucose-induced insulin secretion by coupling metabolic signals to beta-cell membrane potential and the secretory machinery. Reduced K(ATP) channel expression caused by mutations in the channel proteins: sulfonylurea receptor 1 (SUR1) and Kir6.2, results in loss of channel function as seen in congenital hyperinsulinism. Previously, we reported that sulfonylureas, oral hypoglycemic drugs widely used to treat type II diabetes, correct the endoplasmic reticulum to the plasma membrane trafficking defect caused by two SUR1 mutations, A116P and V187D. In this study, we investigated the mechanism by which sulfonylureas rescue these mutants. We found that glinides, another class of SUR-binding hypoglycemic drugs, also markedly increased surface expression of the trafficking mutants. Attenuating or abolishing the ability of mutant SUR1 to bind sulfonylureas or glinides by the following mutations: Y230A, S1238Y, or both, accordingly diminished the rescuing effects of the drugs. Interestingly, rescue of the trafficking defects requires mutant SUR1 to be co-expressed with Kir6.2, suggesting that the channel complex, rather than SUR1 alone, is the drug target. Observations that sulfonylureas also reverse trafficking defects caused by neonatal diabetes-associated Kir6.2 mutations in a way that is dependent on intact sulfonylurea binding sites in SUR1 further support this notion. Our results provide insight into the mechanistic and structural basis on which sulfonylureas rescue K(ATP) channel surface expression defects caused by channel mutations.  相似文献   

9.
ATP-sensitive potassium (K(ATP)) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2 regulate insulin secretion by linking glucose metabolism with membrane potential. The number of K(ATP) channels in the plasma membrane affects the sensitivity of β-cells to glucose. Aberrant surface channel expression leads to insulin secretion disease. Previously, we have shown that K(ATP) channel proteins undergo endoplasmic reticulum (ER)-associated degradation (ERAD) via the ubiquitin-proteasome pathway, and inhibition of proteasome function results in an increase in channel surface expression. Here, we investigated whether Derlin-1, a protein involved in retrotranslocation of misfolded or misassembled proteins across the ER membrane for degradation by cytosolic proteasomes, plays a role in ERAD and, in turn, biogenesis efficiency of K(ATP) channels. We show that both SUR1 and Kir6.2 form a complex with Derlin-1 and an associated AAA-ATPase, p97. Overexpression of Derlin-1 led to a decrease in the biogenesis efficiency and surface expression of K(ATP) channels. Conversely, knockdown of Derlin-1 by RNA interference resulted in increased processing of SUR1 and a corresponding increase in surface expression of K(ATP) channels. Importantly, knockdown of Derlin-1 increased the abundance of disease-causing misfolded SUR1 or Kir6.2 proteins and even partially rescued surface expression in a mutant channel. We conclude that Derlin-1, by being involved in ERAD of SUR1 and Kir6.2, has a role in modulating the biogenesis efficiency and surface expression of K(ATP) channels. The results suggest that physiological or pathological changes in Derlin-1 expression levels may affect glucose-stimulated insulin secretion by altering surface expression of K(ATP) channels.  相似文献   

10.
The ATP-sensitive potassium (K(ATP) ) channel consisting of sulfonylurea receptor 1 (SUR1) and inward-rectifier potassium channel 6.2 (Kir6.2) has a well-established role in insulin secretion. Mutations in either subunit can lead to disease due to aberrant channel gating, altered channel density at the cell surface or a combination of both. Endocytic trafficking of channels at the plasma membrane is one way to influence surface channel numbers. It has been previously reported that channel endocytosis is dependent on a tyrosine-based motif in Kir6.2, while SUR1 alone is unable to internalize. In this study, we followed endocytic trafficking of surface channels in real time by live-cell imaging of channel subunits tagged with an extracellular minimal α-bungarotoxin-binding peptide labeled with a fluorescent dye. We show that SUR1 undergoes endocytosis independent of Kir6.2. Moreover, mutations in the putative endocytosis motif of Kir6.2, Y330C, Y330A and F333I are unable to prevent channel endocytosis. These findings challenge the notion that Kir6.2 bears the sole endocytic signal for K(ATP) channels and support a role of SUR1 in this trafficking process.  相似文献   

11.
ATP-sensitive potassium channel (K(ATP)) is one kind of inwardly rectifying channel composed of two kinds of subunits: the pore forming subunits and the regulatory subunits. K(ATP) channels exist in the sarcolemmal, mitochondrial and nuclear membranes of various tissues. Cell metabolism regulates K(ATP) gene expression and metabolism products regulate the channel by direct interactions, while K(ATP) controls membrane potentials and regulate cell activities including energy metabolism, apoptosis and gene expression. K(ATP) channels from different cell organelles are linked by some signal molecules and they can respond to common stimulation in a coordinate way. In the cardiovascular system K(ATP) has important functions. The most prominent is that opening of this channel can protect cardiac myocytes against ischemic injuries. The sarcolemmal K(ATP) may provide a basic protection against ischemia by energy sparing, while both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels are necessary for the ischemia preconditioning. K(ATP) channels also have important functions including homeostasis maintenance and vascular tone regulation under physiological conditions. Further elucidation of the role of K(ATP) in the cardiovascular system will help us to regulate cell metabolism or prevent damage caused by abnormal channel functions.  相似文献   

12.
Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell K(ATP) channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the K(ATP) channel have recently been reported. We studied a cohort of 59 patients with permanent diabetes who received a diagnosis before 6 mo of age and who did not have a KCNJ11 mutation. ABCC8 gene mutations were identified in 16 of 59 patients and included 8 patients with heterozygous de novo mutations. A recessive mode of inheritance was observed in eight patients with homozygous, mosaic, or compound heterozygous mutations. Functional studies of selected mutations showed a reduced response to ATP consistent with an activating mutation that results in reduced insulin secretion. A novel mutational mechanism was observed in which a heterozygous activating mutation resulted in PNDM only when a second, loss-of-function mutation was also present.  相似文献   

13.
Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.  相似文献   

14.
15.
Direct activation of cloned K(atp) channels by intracellular acidosis   总被引:1,自引:0,他引:1  
ATP-sensitive K(+) (K(ATP)) channels may be regulated by protons in addition to ATP, phospholipids, and other nucleotides. Such regulation allows a control of cellular excitability in conditions when pH is low but ATP concentration is normal. However, whether the K(ATP) changes its activity with pH alterations remains uncertain. In this study we showed that the reconstituted K(ATP) was strongly activated during hypercapnia and intracellular acidosis using whole-cell recordings. Further characterizations in excised patches indicated that channel activity increased with a moderate drop in intracellular pH and decreased with strong acidification. The channel activation was produced by a direct action of protons on the Kir6 subunit and relied on a histidine residue that is conserved in all K(ATP). The inhibition appeared to be a result of channel rundown and was not seen in whole-cell recordings. The biphasic response may explain the contradictory pH sensitivity observed in cell-endogenous K(ATP) in excised patches. Site-specific mutations of two residues showed that pH and ATP sensitivities were independent of each other. Thus, these results demonstrate that the proton is a potent activator of the K(ATP). The pH-dependent activation may enable the K(ATP) to control vascular tones, insulin secretion, and neuronal excitability in several pathophysiologic conditions.  相似文献   

16.
ATP/ADP-sensing (sulfonylurea receptor (SUR)/K(IR)6)(4) K(ATP) channels regulate the excitability of our insulin secreting and other vital cells via the differential MgATP/ADP-dependent stimulatory actions of their tissue-specific ATP-binding cassette regulatory subunits (sulfonylurea receptors), which counterbalance the nearly constant inhibitory action of ATP on the K(+) inwardly rectifying pore. Mutations in SUR1 that abolish its stimulation have been found in infants persistently releasing insulin. Activating mutations in SUR1 have been shown to cause neonatal diabetes. Here, analyses of K(IR)6.2-based channels with diabetogenic receptors reveal that MgATP-dependent hyper-stimulation of mutant SUR can compromise the ability of K(ATP) channels to function as metabolic sensors. I demonstrate that the channel hyperactivity rises exponentially with the number of hyperstimulating subunits, so small subpopulations of channels with more than two mutant SUR can dominate hyperpolarizing currents in heterozygous patients. I uncovered an attenuated tolbutamide inhibition of the hyperstimulated mutant, which is normally sensitive to the drug under non-stimulatory conditions. These findings show the key role of SUR in sensing the metabolic index in humans and urge others to (re)test mutant SUR/K(IR)6 channels from probands in physiologic MgATP.  相似文献   

17.
Congenital hyperinsulinism (CHI), characterized by profound hypoglycaemia related to inappropriate insulin secretion, may be associated histologically with either diffuse insulin hypersecretion or focal adenomatous hyperplasia, which share a similar clinical presentation, but result from different molecular mechanisms. Whereas diffuse CHI is of autosomal recessive, or less frequently of autosomal dominant, inheritance, focal CHI is sporadic. The most common mechanism underlying CHI is dysfunction of the pancreatic ATP-sensitive potassium channel (K(+)(ATP)). The two subunits of the K(+)(ATP) channel are encoded by the sulfonylurea receptor gene (SUR1 or ABCC8) and the inward-rectifying potassium channel gene (KIR6.2 or KCNJ11), both located in the 11p15.1 region. Germ-line, paternally inherited, mutations of the SUR1 or KIR6.2 genes, together with somatic maternal haplo-insufficiency for 11p15.5, were shown to result in focal CHI. Diffuse CHI results from germ-line mutations in the SUR1 or KIR6.2 genes, but also from mutations in several other genes, namely glutamate dehydrogenase (with associated hyperammonaemia), glucokinase, short-chain L-3-hydroxyacyl-CoA dehydrogenase, and insulin receptor gene. Hyperinsulinaemic hypoglycaemia may be observed in several overlapping syndromes, such as Beckwith-Wiedemann syndrome (BWS), Perlman syndrome, and, more rarely, Sotos syndrome. Mosaic genome-wide paternal isodisomy has recently been reported in patients with clinical signs of BWS and CHI. The primary causes of CHI are genetically heterogeneous and have not yet been completely unveiled. However, secondary causes of hyperinsulinism have to be considered such as fatty acid oxidation deficiency, congenital disorders of glycosylation and factitious hypoglycaemia secondary to Munchausen by proxy syndrome.  相似文献   

18.
K channels in the cell membrane of the insulin-secreting RINm5F cell line were studied using the patch-clamp technique in cell-attached patch mode. With 140 mM K in the pipette, two channels displaying different conductive and kinetics properties were observed. A voltage-independent, inward-rectifying, 55-pS channel was active at rest (no glucose, -70 mV), but was almost completely inhibited by 5 mM glucose. A 140-pS channel was seen in the absence of glucose only after cell membrane depolarization with high (30 mM) K. This channel was voltage dependent, with a linear slope conductance between -60 and +60 mV, and was completely inhibited only by greater than 15 mM glucose. The former channel we identify as an ATP-sensitive channel previously described in excised patches and refer to it as the K(ATP) channel. The latter, because of its large conductance and voltage-dependent kinetics, will be referred to as the maxi-K(V) channel, adopting a nomenclature previously used to classify highly conductive K channels (Latorre, R., and C. Miller, 1983, Journal of Membrane Biology, 71:11-30). In addition to glucose, mannose and 2-ketoisocaproate, which also initiate insulin secretion and electrical activity in the islet beta cell, reduced the activity of both the K(ATP) and the maxi-K(V) channel. Lactate and arginine, which potentiate but do not initiate insulin secretion or beta cell electrical activity in normal islets, each caused a large reduction in maxi-K(V) channel activity, without consistently affecting the activity of K(ATP) channels. Another agonist that potentiates insulin secretion and electrical activity in normal cells, the tumor-promoting phorbol ester TPA, blocked maxi-K(V) channel activity while stimulating the activity of the K(ATP) channel, thereby implicating phosphorylation in the control of channel activity. These results indicate that metabolic substrates that initiate electrical activity and insulin secretion in normal beta cells reduce the activity of both the K(ATP) and the maxi-K(V) channel, while potentiating agents reduce only the maxi-K(V) channel. The possible role of these two channels in the processes of initiation and potentiation of the beta cell response is discussed.  相似文献   

19.
Fundamental to the metabolic sensor function of ATP-sensitive K(+) (K(ATP)) channels is the sulfonylurea receptor. This ATP-binding cassette protein, which contains nucleotide binding domains (NBD1 and NBD2) with conserved Walker motifs, regulates the ATP sensitivity of the pore-forming Kir6.2 subunit. Although NBD2 hydrolyzes ATP, a property essential in K(ATP) channel gating, the role of NBD1, which has limited catalytic activity, if at all, remains less understood. Here, we provide functional evidence that cooperative interaction, rather than the independent contribution of each NBD, is critical for K(ATP) channel regulation. Gating of cardiac K(ATP) channels by distinct conformations in the NBD2 ATPase cycle, induced by gamma-phosphate analogs, was disrupted by point mutation not only of the Walker motif in NBD2 but also in NBD1. Cooling membrane patches to decelerate the intrinsic ATPase activity counteracted ATP-induced K(ATP) channel inhibition, an effect that mimicked stabilization of the MgADP-bound posthydrolytic state at NBD2 by the gamma-phosphate analog orthovanadate. Temperature-induced channel activation was abolished by mutations that either prevent stabilization of MgADP at NBD2 or ATP at NBD1. These findings provide a paradigm of K(ATP) channel gating based on integration of both NBDs into a functional unit within the multimeric channel complex.  相似文献   

20.
ATP-sensitive potassium (K(ATP)) channels are known to be critical in the control of both insulin and glucagon secretion, the major hormones in the maintenance of glucose homeostasis. The involvement of K(ATP) channels in glucose uptake in the target tissues of insulin, however, is not known. We show here that Kir6.2(-/-) mice lacking Kir6.2, the pore-forming subunit of these channels, have no K(ATP) channel activity in their skeletal muscles. A 2-deoxy-[(3)H]glucose uptake experiment in vivo showed that the basal and insulin-stimulated glucose uptake in skeletal muscles and adipose tissues of Kir6.2(-/-) mice is enhanced compared with that in wild-type (WT) mice. In addition, in vitro measurement of glucose uptake indicates that disruption of the channel increases the basal glucose uptake in Kir6.2(-/-) extensor digitorum longus and the insulin-stimulated glucose uptake in Kir6.2(-/-) soleus muscle. In contrast, glucose uptake in adipose tissue, measured in vitro, was similar in Kir6.2(-/-) and WT mice, suggesting that the increase in glucose uptake in Kir6.2(-/-) adipocytes is mediated by altered extracellular hormonal or neuronal signals altered by disruption of the K(ATP) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号