首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Epigenetics     
《Epigenetics》2013,8(8):823-840
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.  相似文献   

5.
Epigenetics     
Issa JP  Just W 《FEBS letters》2011,585(13):1993
  相似文献   

6.
7.
Epigenetics is defined as "the study of mitotically and/or meiotically heritable changes in gene expression that cannot be explained by changes in the DNA sequence". Setting up the epigenetic program is crucial for correct development and its stable inheritance throughout its lifespan is essential for the maintenance of the tissue- and cell-specific functions of the organism. For many years, the genetic causes of cancer have hold centre stage. However, the recent wealth of information about the molecular mechanisms which, by modulating the chromatin structure, can regulate gene expression has high-lighted the predominant role of epigenetic modifications in the initiation and progression of numerous pathologies, including cancer. The nucleosome is the major target of these epigenetic regulation mechanisms. They include a series of tightly interconnected steps which starting with the setting ("writing") of the epigenetic mark till its "reading" and interpretation will result in long-term gene regulation. The major epigenetic changes associated with tumorigenesis are aberrant DNA methylation of CpG islands located in the promoter region of tumor suppressor gene, global genomic hypomethylation and covalent modifications of histone N-terminal tails which are protruding out from the nucleosome core. In sharp contrast with genetic modifications, epigenetic modifications are highly dynamic and reversible. The characterization of specific inhibitors directed against some key epigenetic players has opened a new and promising therapeutic avenue, the epigenetic therapy, since some inhibitors are already used in clinical trials.  相似文献   

8.
The contribution of epigenetic mechanisms to cardiovascular diseases remains poorly understood. Hypomethylation of genomic DNA is present in human atherosclerotic lesions and methylation changes also occur at the promoter level of several genes involved in the pathogenesis of atherosclerosis, such as extracellular superoxide dismutase, estrogen receptor-α, endothelial nitric oxide synthase and 15-lipoxygenase. So far, no clear data is available about histone modification marks in atherosclerotic lesions. It remains unclear whether epigenetic changes are causally related to the pathogenetic features, such as clonal proliferation of lesion smooth muscle cells, lipid accumulation and modulation of immune responses in the lesions, or whether they merely represent a consequence of the ongoing pathological process. However, epigenetic changes could at least partly explain poorly understood environmental and dietary effects on atherogenesis and the rapid increases and decreases in the incidence of coronary heart disease observed in various populations. RNAi mechanisms may also contribute to the epigenetic regulation of vascular cells. Therapies directed towards modification of the epigenetic status of vascular cells might provide new tools to control atherosclerosis-related cardiovascular diseases.  相似文献   

9.
10.
表遗传学与肿瘤   总被引:1,自引:0,他引:1  
表遗传学通过对核小体上D NA和组蛋白的结构修饰以及其后导致的染色质结构改变而对局部或整体的基因表达产生重要的调控作用.肿瘤分子生物学研究表明,表遗传学的紊乱与基因的变异一起参与了包括肿瘤细胞生长和分化、细胞周期的调控、D N A修复与重新表达、原癌基因的激活、肿瘤细胞的转移及肿瘤细胞逃避宿主免疫监视等肿瘤发生发展的整个过程.相对于基因变异而言,可逆的表遗传学调控为肿瘤的治疗提供一个全新的方向,而对其分子机制的研究为抗肿瘤药物的设计也提供了一个全新的靶点,从而对肿瘤的临床治疗具有重要的意义.  相似文献   

11.
12.
13.
Susannah Varmuza 《Génome》2003,46(6):963-7; discussion 968-73
Classic neo-Darwinian theory is predicated on the notion that all heritable phenotypic change is mediated by alterations of the DNA sequence in genomes. However, evidence is accumulating that stably heritable phenotypes can also have an epigenetic basis, lending support to the long-discarded notion of inheritance of acquired traits. As many of the examples of epigenetic inheritance are mediated by position effects, the possibility exists that chromosome rearrangements may be one of the driving forces behind evolutionary change by exerting position effect alterations in gene activity, an idea articulated by Richard Goldschmidt. The emerging evidence suggests that Goldschmidt's controversial hypothesis deserves a serious reevaluation.  相似文献   

14.
Though there are multiple routes through which parents can influence their offspring, recent studies of environmentally induced epigenetic variation have highlighted the role of non-genomic pathways. In addition to the experience-dependent modification of DNA methylation that can be achieved via mother-infant interactions, there has been increasing interest in the epigenetic mechanisms through which paternal influences on offspring development can be achieved. Epidemiological and laboratory studies suggest that paternal nutritional and toxicological exposures as well as paternal age and phenotypic variation can lead to variations in offspring and, in some cases, grand-offspring development. These findings suggest a potential epigenetic germline inheritance of paternal effects. However, it may be important to consider the interplay between maternal and paternal influences as well as the experimental dissociation between experience-dependent and germline transmission when exploring the role of epigenetic variation within the germline as a mediator of these effects. In this review, we will explore these issues, with a particular focus on the potential role of paternally induced maternal investment, highlight the literature illustrating the transgenerational impact of paternal experiences, and discuss the evidence supporting the role of epigenetic mechanisms in maintaining paternal effects both within and across generations.  相似文献   

15.
《Epigenetics》2013,8(9):987-993
Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.  相似文献   

16.
Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well‐being, in this article we explore whether there are rights‐based obligations supervening on intergenerational epigenetic programming despite the non‐identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non‐existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non‐existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being.  相似文献   

17.
Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease.  相似文献   

18.
Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states.  相似文献   

19.
In May 2011, the Canadian Conference on Epigenetics: Epigenetics Eh! was held in London, Canada. The objectives of this conference were to showcase the breadth of epigenetic research on environment and health across Canada and to provide the catalyst to develop collaborative Canadian epigenetic research opportunities, similar to existing international epigenetic initiatives in the US and Europe. With ten platform sessions and two sessions with over 100 poster presentations, this conference featured cutting-edge epigenetic research, presented by Canadian and international principal investigators and their trainees in the field of epigenetics and chromatin dynamics. An EpigenART competition included ten artists, creating a unique opportunity for artists and scientists to interact and explore their individual interpretations of this scientific discipline. The conference provided a unique venue for a significant cross-section of Canadian epigenetic researchers from diverse disciplines to meet, interact, collaborate and strategize at the national level.  相似文献   

20.
Asthma is caused by both heritable and environmental factors. It has become clear that genetic studies do not adequately explain the heritability and susceptibility to asthma. The study of epigenetics, heritable non-coding changes to DNA may help to explain the heritable component of asthma. Additionally, epigenetic modifications can be influenced by the environment, including pollution and cigarette smoking, which are known asthma risk factors. These environmental trigger-induced epigenetic changes may be involved in skewing the immune system towards a Th2 phenotype following in utero exposure and thereby enhancing the risk of asthma. Alternatively, they may directly or indirectly modulate the immune and inflammatory processes in asthmatics via effects on treatment responsiveness. The study of epigenetics may therefore play an important role in our understanding and possible treatment of asthma and other allergic diseases. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号