首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
There is evidence that preterm fetuses have blunted chemoreflex-mediated responses to hypoxia. However, the preterm fetus has much lower aerobic requirements than at term, and so moderate hypoxia may not be sufficient to elicit maximal chemoreflex responses; there are only limited quantitative data on the ontogeny of chemoreflex and hemodynamic responses to severe asphyxia. Chronically instrumented fetal sheep at 0.6 (n = 12), 0.7 (n = 12), and 0.85 (n = 8) of gestational age (GA; term = 147 days) were exposed to 30, 25, or 15 min of complete umbilical cord occlusion, respectively. At all ages, occlusion was associated with early onset of bradycardia, profoundly reduced femoral blood flow and conductance, and hypertension. The 0.6-GA fetuses showed a significantly slower and lesser fall in femoral blood flow and conductance compared with the 0.85-GA group, with a correspondingly reduced relative rise in mean arterial blood pressure. As occlusion continued, the initial adaptation was followed by loss of peripheral vasoconstriction and progressive development of hypotension in all groups. The 0.85-GA fetuses showed significantly more sustained reduction in femoral conductance but also more rapid onset of hypotension than either of the younger groups. Electroencephalographic (EEG) activity was suppressed during occlusion in all groups, but the degree of suppression was less at 0.6 GA than at term. In conclusion, the near-midgestation fetus shows attenuated initial (chemoreflex) peripheral vasomotor responses to severe asphyxia compared with more mature fetuses but more sustained hemodynamic adaptation and reduced suppression of EEG activity during continued occlusion of the umbilical cord.  相似文献   

2.
Clinically and experimentally male fetuses are at significantly greater risk of dying or suffering injury at birth, particularly after premature delivery. We undertook a retrospective cohort analysis of 60 female and 65 male singleton preterm fetal sheep (103-104 days, 0.7 gestation) with mean arterial blood pressure (MAP), heart rate, and carotid and femoral blood flow recordings during 25 min of umbilical cord occlusion in utero. Occlusions were stopped early if fetal MAP fell below 8 mmHg or if there was asystole for >20 s. Fetuses that were able to complete the full 25-min period of occlusion showed no differences between sexes for any cardiovascular responses. Similar numbers of occlusions were stopped early in males (mean: 21 min, n = 16) and females (mean: 23 min, n = 16); however, they showed different responses. Short-occlusion males (n = 16) showed a slower initial fall in femoral vascular conductance, followed by greater bradycardia, hypotension, and associated organ hypoperfusion compared with full-occlusion fetuses. In contrast, short-occlusion females (n = 16) showed a significantly more rapid early increase in femoral vascular conductance than the full-occlusion fetuses, followed by worsening of bradycardia and hypotension that was intermediate to the full-occlusion fetuses and short-occlusion males. Among all fetuses, MAP at 15 min of occlusion, corresponding with the time of the maximal rate of fall, was correlated with postmortem weight in males (R(2) = 0.07) but not females. In conclusion, male and female fetuses showed remarkably similar chemoreflex and hemodynamic responses to severe asphyxia, but some males did show impaired hemodynamic adaptation within the normal weight range.  相似文献   

3.
This study examined the hypothesis that repeated episodes of brief but severe hypoxia would not attenuate the chemoreflex-mediated rapid initial fall in fetal heart rate (FHR) and, further, that greater hypoxic stress, as shown by hypotension and metabolic acidosis, would be associated with an enhanced chemoreflex response. Chronically instrumented, near-term fetal sheep received 1 min total umbilical cord occlusion either every 5 min for 4 h (1:5 group; n = 8) or every 2.5 min (1:2.5 group; n = 8) until mean arterial blood pressure fell to <20 mmHg on two successive occlusions. Umbilical cord occlusion caused variable decelerations, with sustained hypertension in the 1:5 group and little change in acid-base status (pH 7.34 +/- 0.03 after 4 h). In contrast, the 1:2.5 group showed progressive hypotension and metabolic acidemia (pH 6.92 +/- 0.04 after the last occlusion). The 1:2.5 group showed a significant increase in the rate of initial fall in FHR during the occlusion series, which was greater than the 1:5 group in the last 30 min of the occlusion series (9.4 +/- 1.4 vs. 3.5 +/- 0.3 beats.min(-1).s(-1); P < 0.01), with a greater fall in FHR (71.9 +/- 6.5 vs. 47.0 +/- 8.7 beats/min; P < 0.05). In summary, this study demonstrated that repetitive laborlike cord occlusions, which led to severe fetal compromise, were associated with an increase in the slope and magnitude of the initial FHR deceleration. These findings support the concept of the chemoreflex as a central, robust component of fetal adaptation to severe hypoxia.  相似文献   

4.
Although the administration of 100% O2 alone or combined with umbilical cord occlusion induces continuous breathing and arousal in the fetal sheep (Baier, Hasan, Cates, Hooper, Nowaczyk & Rigatto, 1990a), the individual contribution of O2 and cord occlusion to the response have not been determined. We hypothesized that if O2 is an important factor in the induction of continuous breathing, administration of O2 low enough (10%) to bring fetal arterial PO2 to about 20 torr while the fetus is breathing continuously should reverse these changes. Thus we subjected 12 chronically instrumented fetal sheep to 10% O2 for 10 minutes after the establishment of continuous breathing by O2 (4 fetuses; 137 +/- 1 days) or by O2 plus umbilical cord occlusion (8 fetuses; 134 +/- 1 days). Arterial PO2 decreased from about 250 torr to 20 torr during 10% O2. This induced a significant decrease in breathing output (EMGdi x f) related primarily to a decrease in frequency (f). In 3/5 experiments in 4 fetuses, with O2 alone, apnoea developed within 4 +/- 0.6 min; in 12/13 experiments in 8 fetuses, with added cord occlusion it developed at 5 +/- 0.6 min. With the decrease in PaO2, electrocortical activity (ECoG) switched from low to high-voltage within 6 minutes in 5/5 experiments (O2 alone) and in 11/13 (O2 plus cord occlusion). The findings suggest that umbilical cord occlusion alone is not sufficient to maintain breathing continuously and an increased PaO2 is needed. We speculate that in the fetus there is a vital link between PaO2, breathing and ECoG with low PaO2 inhibiting and high PaO2 favouring breathing and arousal.  相似文献   

5.
This study examined the hypothesis that the development of hydrops fetalis after asphyxia in the 0.6 gestation sheep fetus would be associated with activation of the fetal renin-angiotensin system (RAS). Fetuses were randomly assigned to either sham occlusion (n = 7) or to 30 min of asphyxia induced by complete umbilical cord occlusion for 30 min (n = 8). Asphyxia led to severe bradycardia and hypotension that resolved after release of occlusion. After occlusion, plasma renin concentration was significantly increased in the asphyxia group compared with controls (P < 0.005) after 3 min (16.3 +/- 5.3 vs. 4.1 +/- 1.3 ng. ml(-1). h(-1)), and 72 h (30.6 +/- 6.3 vs. 3.7 +/- 1.2 ng. ml(-1). h(-1)). Renal renin concentrations and mRNA levels were significantly greater in the asphyxia group after 72 h of recovery. All fetuses in the asphyxia group showed generalized tissue edema, ascites, and pleural effusions after 72 h of recovery. In conclusion, asphyxia in the preterm fetus caused sustained activation of the RAS, which was associated with hydrops fetalis.  相似文献   

6.
The role of umbilical cord occlusion in the initiation of breathing at birth was investigated using unanesthetized fetal sheep that were provided with access to a tracheal supply of hyperoxic air. Near-term fetuses were studied in utero to eliminate extraneous sensory stimuli. Gasping movements began 1.4 +/- 0.1 min after cord occlusion. Breathing was irregular for several minutes before continuous breathing (greater than or equal to 40 min-1) began 6 +/- 1 min after cord occlusion (n = 10). Arterial PO2 rose significantly from 18 +/- 2 mmHg before occlusion and was 115 +/- 15 mmHg immediately before cord release at 15 or 30 min. Breathing continued even during high-voltage electrocortical activity. Cord release caused the breathing rate to decrease from 77 +/- 13 min-1 during the last 5 min of cord occlusion to 5 +/- 3 min-1 10 min after cord release (P less than 0.002; n = 7). Results indicate the change from placental to lung gas exchange can occur in the absence of sensory and thermal changes normally present at birth and that the transition is reversible.  相似文献   

7.
After unilateral uterine artery ligation in midpregnancy twelve guinea-pig does were anesthetized at 63 days of gestation. The ST waveform of the fetal electrocardiogram and the short term heart rate variability were studied during normoxia and in response to acute hypoxia in growth retarded fetuses (n = 12, mean +/- SEM, 58.5 +/- 3.9 g) and their normal sized littermates (n = 12, 94.3 +/- 3.5 g). Hypoxia was induced by letting the doe breathe a low-oxygen gas mixture. After 10 min of hypoxia fetal blood was sampled by decapitation and blood gases, acid-base status and catecholamine concentrations were analyzed. The does responded to decrease in inspired oxygen concentration with changes in oxygen tension (13.8 +/- 0.8 to 4.3 +/- 0.2 kPa) and oxygen saturation (99.9 +/- 0.1% to 70.5 +/- 1.8%). Fetal blood gases and plasma catecholamine concentrations did not differ between the groups. In the growth retarded group standard bicarbonate was significantly lower compared to controls. The T/QRS ratio (the quotient between T wave height and QRS peak to peak amplitude) was normal and similar in both groups prior to the hypoxic period. In response to hypoxia T/QRS ratio increased in the normal sized group and T/QRS was correlated to carbon dioxide tension, oxygen saturation, pH, lactate, standard bicarbonate concentration, standard base excess and plasma noradrenaline concentration, respectively. The growth retarded fetuses presented a completely different pattern where 7 out of 12 fetuses showed a biphasic ST waveform during hypoxia with depression and downward sloping of the ST segment and negative T wave.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The sympathetic nervous system (SNS) is an important mediator of fetal adaptation to life-threatening in utero challenges, such as asphyxia. Although the SNS is active well before term, SNS responses mature significantly over the last third of gestation, and its functional contribution to adaptation to asphyxia over this critical period of life remains unclear. Therefore, we examined the hypotheses that increased renal sympathetic nerve activity (RSNA) is the primary mediator of decreased renal vascular conductance (RVC) during complete umbilical cord occlusion in preterm fetal sheep (101 ± 1 days; term 147 days) and that near-term fetuses (119 ± 0 days) would have a more rapid initial vasomotor response, with a greater increase in RSNA. Causality of the relationship of RSNA and RVC was investigated using surgical (preterm) and chemical (near-term) denervation. All fetal sheep showed a significant increase in RSNA with occlusion, which was more sustained but not significantly greater near-term. The initial fall in RVC was more rapid in near-term than preterm fetal sheep and preceded the large increase in RSNA. These data suggest that although RSNA can increase as early as 0.7 gestation, it is not the primary determinant of RVC. This finding was supported by denervation studies. Interestingly, chemical denervation in near-term fetal sheep was associated with an initial fall in blood pressure, suggesting that by 0.8 gestation sympathetic innervation of nonrenal vascular beds is critical to maintain arterial blood pressure during the rapid initial adaptation to asphyxia.  相似文献   

9.
This study was designed to test the hypothesis that the pulsatility index (PI) of the umbilical artery flow velocity waveform varies as a function of placental vascular resistance. Placental vascular resistance was raised by a one-minute occlusion of the maternal inferior vena cava. Occlusion of the maternal inferior vena cava resulted in a decrease in fetal heart rate from 183 +/- 7.8 beats/min to 142 +/- 8.6 beats/min at the end of occlusion (P less than 0.05). Placental vascular resistance increased from 0.113 +/- 0.021 mmHg.ml-1.min during control to 0.151 +/- 0.033 mmHg.ml-1.min (P less than 0.05) during occlusion. The pulsatility index increased from 1.05 +/- 0.05 to 1.85 +/- 0.4 (P less than 0.05) during occlusion. After parasympathetic blockade with atropine fetal heart rate did not change during occlusion. Placental vascular resistance increased from 0.091 +/- 0.014 before to 0.121 +/- 0.021 mmHg.ml-1.min during occlusion (P less than 0.05). The pulsatility index increased from 0.98 +/- 0.1 before to 1.12 +/- 0.12 during occlusion (P less than 0.05). These results support the hypothesis that, in the fetal sheep, placental vascular resistance is one of the determinants of the pulsatility index of the umbilical artery.  相似文献   

10.
Changes in the ST waveform of the fetal ECG have been detected in 47 term deliveries with vertex presentations using a specially developed microprocessor-based system for on-line recording of T wave amplitude. The T wave was quantified by the T/QRS ratio. The recording included one scalp electrode for exploration and a maternal skin electrode as reference. Signal quality allowed optimal ST waveform assessment in 89% of the cases. The degree of perinatal asphyxia was judged from cord artery acid-base status and the neonatal outcome. In completely normal fetuses at term the mean T/QRS ratio was 0.148 with a standard deviation of 0.048. With this basic information we can proceed in the investigation of the T/QRS ratio as a means for fetal surveillance.  相似文献   

11.
Renal impairment is common in preterm infants, often after exposure to hypoxia/asphyxia or other circulatory disturbances. We examined the hypothesis that this association is mediated by reduced renal blood flow (RBF), using a model of asphyxia induced by complete umbilical cord occlusion for 25 min (n = 13) or sham occlusion (n = 6) in chronically instrumented preterm fetal sheep (104 days, term is 147 days). During asphyxia there was a significant fall in RBF and urine output (UO). After asphyxia, RBF transiently recovered, followed within 30 min by a secondary period of hypoperfusion (P < 0.05). This was mediated by increased renal vascular resistance (RVR, P < 0.05); arterial blood pressure was mildly increased in the first 24 h (P < 0.05). RBF relatively normalized between 3 and 24 h, but hypoperfusion developed again from 24 to 60 h (P < 0.05, analysis of covariance). UO significantly increased to a peak of 249% of baseline between 3 and 12 h (P < 0.05), with increased fractional excretion of sodium, peak 10.5 +/- 1.4 vs. 2.6 +/- 0.6% (P < 0.001). Creatinine clearance returned to normal after 2 h; there was a transient reduction at 48 h to 0.32 +/- 0.02 ml.min(-1).g(-1) (vs. 0.45 +/- 0.04, P < 0.05) corresponding with the time of maximal depression of RBF. No renal injury was seen on histological examination at 72 h. In conclusion, severe asphyxia in the preterm fetus was associated with evolving renal tubular dysfunction, as shown by transient polyuria and natriuresis. Despite a prolonged increase in RVR, there was only a modest effect on glomerular function.  相似文献   

12.
Spontaneous antenatal hypoxia is associated with high risk of adverse outcomes, however, there is little information on neural adaptation to labor-like insults. Chronically instrumented near-term sheep fetuses (125 ± 3 days, mean ± SEM) with baseline PaO2 < 17 mmHg (hypoxic group: n = 8) or > 17 mmHg (normoxic group: n = 8) received 1-minute umbilical cord occlusions repeated every 5 minutes for a total of 4 hours, or until mean arterial blood pressure (MAP) fell below 20 mmHg for two successive occlusions. 5/8 fetuses with pre-existing hypoxia were unable to complete the full series of occlusions (vs. 0/8 normoxic fetuses). Pre-existing hypoxia was associated with progressive metabolic acidosis (nadir: pH 7.08 ± 0.04 vs. 7.33 ± 0.02, p<0.01), hypotension during occlusions (nadir: 24.7 ± 1.8 vs. 51.4 ± 3.2 mmHg, p<0.01), lower carotid blood flow during occlusions (23.6 ± 6.1 vs. 63.0 ± 4.8 mL/min, p<0.01), greater suppression of EEG activity during, between, and after occlusions (p<0.01) and slower resolution of cortical impedance, an index of cytotoxic edema. No normoxic fetuses, but 4/8 hypoxic fetuses developed seizures 148 ± 45 minutes after the start of occlusions, with a seizure burden of 26 ± 6 sec during the inter-occlusion period, and 15.1 ± 3.4 min/h in the first 6 hours of recovery. In conclusion, in fetuses with pre-existing hypoxia, repeated brief asphyxia at a rate consistent with early labor is associated with hypotension, cephalic hypoperfusion, greater EEG suppression, inter-occlusion seizures, and more sustained cytotoxic edema, consistent with early onset of neural injury.  相似文献   

13.
This study was undertaken to determine the mechanisms mediating changes in fetal heart rate variability (FHRV) during and after exposure to asphyxia in the premature fetus. Preterm fetal sheep at 0.6 of gestation (91 +/- 1 days, term is 147 days) were exposed to either sham occlusion (n = 10) or to complete umbilical cord occlusion for either 20 (n = 7) or 30 min (n = 10). Cord occlusion led to a transient increase in FHRV with abrupt body movements that resolved after 5 min. In the 30 min group there was a marked increase in FHRV in the final 10 min of occlusion related to abnormal atrial activity. After reperfusion, FHRV in both study groups was initially suppressed and progressively increased to baseline levels over the first 4 h of recovery. In the 20 min group this improvement was associated with return of normal EEG activity and movements. In contrast, in the 30 min group the EEG was abnormal with epileptiform activity superimposed on a suppressed background, which was associated with abnormal fetal movements. As the epileptiform activity resolved, FHRV fell and became suppressed for the remainder of the study. Histological assessment after 72 h demonstrated severe brain stem injury in the 30 min group but not in the 20 min group. In conclusion, during early recovery from asphyxia, epileptiform activity and associated abnormal fetal movements related to evolving neural injury can cause a confounding transient increase in FHRV, which mimics the normal pattern of recovery. However, chronic suppression of FHRV was a strong predictor of severe brain stem injury.  相似文献   

14.
The metabolic adaptation of the hindlimb in the fetus to a reversible period of adverse intrauterine conditions and, subsequently, to a further episode of acute hypoxemia has been examined. Sixteen sheep fetuses were chronically instrumented with vascular catheters and transit-time flow probes. In nine of these fetuses, umbilical blood flow was reversibly reduced by 30% from baseline for 3 days (umbilical cord compression), while the remaining fetuses acted as sham-operated, age-matched controls. Acute hypoxemia was subsequently induced in all fetuses by reducing maternal fractional inspired oxygen concentration for 1 h. Paired hindlimb arteriovenous blood samples were taken at appropriate intervals during cord compression and acute hypoxemia, and by using femoral blood flow and the Fick principle, substrate delivery, uptake, and output were calculated. Umbilical cord compression reduced blood oxygen content and delivery to the hindlimb and increased hindlimb oxygen extraction and blood glucose and lactate concentration in the fetus. However, hindlimb glucose and oxygen consumption were unaltered during umbilical cord compression. In contrast, hindlimb oxygen delivery and uptake were significantly reduced in all fetuses during subsequent acute hypoxemia, but glucose extraction, oxygen extraction, and hindlimb lactate output significantly increased in sham-operated control fetuses only. Preexposure of the fetus to a temporary period of adverse intrauterine conditions alters the metabolic response of the fetal hindlimb to subsequent acute stress. Additional data suggest that circulating blood lactate may be derived from sources other than the fetal hindlimb under these circumstances. The lack of hindlimb lactate output during acute hypoxemia in umbilical cord-compressed fetuses, despite a significant fall in oxygen delivery to and uptake by the hindlimb, suggests that the fetal hindlimb may not respire anaerobically after exposure to adverse intrauterine conditions. hypoxia  相似文献   

15.
Fetal susceptibility to hypoxic brain injury increases over the last third of gestation. This study examined the hypothesis that this is associated with impaired mitochondrial adaptation, as measured by more rapid oxidation of cytochrome oxidase (CytOx) during profound asphyxia. METHODS: Chronically instrumented fetal sheep at 0.6, 0.7, and 0.85 gestation were subjected to either 30 min (0.6 gestational age (ga), n = 6), 25 min (0.7 ga, n = 27) or 15 min (0.85 ga, n = 17) of complete umbilical cord occlusion. Fetal EEG, cerebral impedance (to measure brain swelling) and near-infrared spectroscopy-derived intra-cerebral oxygenation (ΔHb = HbO(2) - Hb), total hemoglobin (THb) and CytOx redox state were monitored continuously. Occlusion was associated with profound, rapid fall in ΔHb in all groups to a plateau from 6 min, greatest at 0.85 ga compared to 0.6 and 0.7 ga (p<0.05). THb initially increased at all ages, with the greatest rise at 0.85 ga (p<0.05), followed by a progressive fall from 7 min in all groups. CytOx initially increased in all groups with the greatest rise at 0.85 ga (p<0.05), followed by a further, delayed increase in preterm fetuses, but a striking fall in the 0.85 group after 6 min of occlusion. Cerebral impedance (a measure of cytotoxic edema) increased earlier and more rapidly with greater gestation. In conclusion, the more rapid rise in CytOx and cortical impedance during profound asphyxia with greater maturation is consistent with increasing dependence on oxidative metabolism leading to earlier onset of neural energy failure before the onset of systemic hypotension.  相似文献   

16.
Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103–104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia.  相似文献   

17.
The role of umbilical cord occlusion in the initiation of breathing at birth was investigated by use of 16 unanesthetized fetal sheep near full term. Artificial ventilation with high-frequency oscillation was used to control fetal arterial blood gas tensions. At baseline, PCO2 was maintained at control fetal values and PO2 was elevated to between 25 and 50 Torr. In the first study on six intact and four vagotomized fetuses, arterial PCO2 and PO2 were maintained constant during two 30-min periods of umbilical cord occlusion. Nevertheless, the mean fetal breathing rate increased significantly when the umbilical cord was occluded. In the second study on six intact fetuses, hypercapnia (68 Torr) was imposed by adding CO2 to the ventilation gas. When the umbilical cord was occluded, there was a significantly greater stimulation of breathing (rate, incidence, and amplitude) in response to hypercapnia than in response to hypercapnia alone. During cord occlusion, plasma prostaglandin E2 concentration decreased significantly. Results indicate that cord occlusion stimulates breathing possibly by causing the removal of a placentally produced respiratory inhibitor such as prostaglandin E2 from the circulation.  相似文献   

18.
The majority of pre-clinical studies of hypoxic-ischemic encephalopathy at term-equivalent have focused on either relatively mild insults, or on functional paradigms of cerebral ischemia or hypoxia-ischemia/hypotension. There is surprisingly little information on the responses to single, severe ‘physiological’ insults. In this study we examined the evolution and pattern of neural injury after prolonged umbilical cord occlusion (UCO). 36 chronically instrumented fetal sheep at 125–129 days gestational age (term = 147 days) were subjected to either UCO until mean arterial pressure was < = 8 mmHg (n = 29), or sham occlusion (n = 7). Surviving fetuses were killed after 72 hours for histopathologic assessment with acid-fuchsin thionine. After UCO, 11 fetuses died with intractable hypotension and 5 ewes entered labor and were euthanized. The remaining 13 fetuses showed marked EEG suppression followed by evolving seizures starting at 5.8 (6.8) hours (median (interquartile range)). 6 of 13 developed status epilepticus, which was associated with a transient secondary increase in cortical impedance (a measure of cytotoxic edema, p<0.05). All fetuses showed moderate to severe neuronal loss in the hippocampus and the basal ganglia but mild cortical cell loss (p<0.05 vs sham occlusion). Status epilepticus was associated with more severe terminal hypotension (p<0.05) and subsequently, greater neuronal loss (p<0.05). In conclusion, profound UCO in term-equivalent fetal sheep was associated with delayed seizures, secondary cytotoxic edema, and subcortical injury, consistent with the predominant pattern after peripartum sentinel events at term. It is unclear whether status epilepticus exacerbated cortical injury or was simply a reflection of a longer duration of asphyxia.  相似文献   

19.
The effects of hypoxia on glucose turnover in the fetal sheep   总被引:3,自引:0,他引:3  
The origin of the hypoxia-induced rise in fetal blood glucose concentration in fetal sheep of 124-135 days was investigated. Hypoxia was induced in pregnant sheep and fetuses with chronically implanted vascular catheters by causing the ewes to breathe 9% O2 and 3% CO2 in N2 for 60 min. The rise in fetal plasma glucose caused by a 60% reduction in maternal PaO2 was associated with a 50% fall in plasma insulin concentration. The fall in insulin and rise in glucose was prevented by the alpha-adrenergic blocking agent phentolamine but not by the beta-antagonist propranolol. Turnover of glucose in the fetus under these conditions was measured with [6-3H] and [U-14C] glucose. Hypoxia reduced fetal glucose consumption despite the hyperglycaemia. After 30 min of hypoxia there was no evidence of fetal production of glucose but by 60 min substantial production was evident. The reduced fetal consumption and increased production of glucose was inhibited by phentolamine but not by propranolol. It is concluded that in the fetal sheep hypoxia induced hyperglycaemia is first caused by reduced consumption of glucose and thus fetal glycogen stores are not depleted. If the hypoxia persists fetal blood glucose is elevated further by fetal production of glucose.  相似文献   

20.
To examine the effects of vasopressin on fetal oxygenation the hormone was infused intravenously for 1 h (1.4-3.5 mU X min-1 X kg fetal weight-1) to chronically catheterized fetal lambs in utero (113-137 days gestation). Arterial pressure rose (48.3 to 59.6 mmHg) (1 mmHg = 133.322 Pa) and heart rate fell (185.3 to 141.0 beats/min) during the infusion. There was a significant increase in fetal arterial PO2 (20.0 to 23.1 mmHg) and significant declines in pH (7.414 to 7.381) and base excess. Umbilical blood flow rose, and the percentage increase in flow (23%) was identical to the proportional rise in arterial pressure. Accompanying the rise in umbilical blood flow was a rise in umbilical oxygen delivery. But as there was no change in fetal oxygen consumption, fractional oxygen extraction by the fetus fell significantly (0.31 to 0.25). These data indicate that the vasopressin-induced rise in fetal vascular PO2 results from an increase in umbilical oxygen delivery and concomitant fall in fractional extraction. Fetal vasopressin levels are greatly elevated during hypoxia, and under conditions of reduced oxygen supply, the effects of the hormone on umbilical oxygen delivery and vascular PO2 could have definite survival value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号