首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that IL-2 induces lymphocytes to produce interferon-gamma (IFN-gamma) and this IFN type is particularly efficient in inducing tumor cell resistance to natural killer (NK) cell-mediated lysis. We have investigated the effect of IFN on tumor cell sensitivity to LAK cell-mediated cytotoxicity. Pretreatment of the human K562 leukemia and HHMS melanoma with IFN-gamma and the Daudi lymphoma with IFN-alpha caused a significant reduction in sensitivity to lysis by human LAK cells generated in vitro in the presence of human recombinant IL-2 (100 U/ml). The LAK activity was mediated by cells expressing NK cell markers (CD16,NKH1) as well as by cells with T cell markers (CD3, CD5). IFN-treated K562 cells were protected from lysis mediated by all these populations. Supernatants from LAK cultures containing IFN-gamma were able to induce NK and LAK resistance when used to pretreat K562 overnight. Antibodies to IFN-gamma but not to IFN-alpha were able to neutralize this activity. Taken together, these results indicate that the production of IFN-gamma by LAK cells may be of importance in induction of tumor cell resistance to LAK cell-mediated lysis.  相似文献   

2.
The effects of adherent cell depletion, indomethacin, and prostaglandin E2 (PGE2) on murine LAK cell activity were investigated. Removal of plastic adherent cells from splenocyte suspensions either prior to 5-day culture with 1000 U/ml of recombinant human IL-2 (rIL-2) or prior to assay resulted in an enhanced LAK cell cytotoxicity compared to that of whole spleen cell suspensions. Indomethacin enhanced LAK cell cytotoxicity of whole splenocyte suspensions if present during the culture period, but had no effect on whole splenocyte or adherent cell-depleted cell suspensions if added just prior to assay. PGE2 suppressed LAK cell activity of nonadherent splenocyte but not whole splenocyte suspensions when present during the culture period. In vivo treatment of mice with indomethacin enhanced cytotoxicity directed toward both LAK sensitive, natural killer (NK) resistant (P-815) and LAK, NK sensitive (YAC-1) tumor cell targets. Splenocytes from indomethacin-treated mice cultured with additional indomethacin and rIL-2 exhibited highest LAK cell activity. The results from this study indicate that LAK cells are regulated by adherent cells which suppress LAK cell activity. This suppression can be reversed both in vitro and in vivo by indomethacin. This study has important implications for the possible clinical use of indomethacin in the potentiation of in vivo and in vitro LAK cell activity for immunotherapeutic protocols.  相似文献   

3.
Summary We developed a monoclonal antibody (mAb) 211, which recognizes the precursors in peripheral blood of lymphokine-activated killer cells (LAK) induced by recombinant interleukin-2 (rIL-2). In conjunction with complement mAb 211 also eliminates natural killer cells (NK) and a majority of the cytotoxic T lymphocytes. B cells and monocytes do not express the 211 antigen. Since mAb 211 recognized such a large percentage of peripheral blood lymphocytes we examined which 211+ subpopulation was the predominant precursor of rIL-2-induced LAK cells using two-color fluoresence-activated cell sorting (fluorescein-conjugated 211 mAb plus phycoerythrin-CD11b). This method identified the 211+/ CD11b+ population as the predominant phenotype of the rIL-2-induced LAK precursor. In addition, we directly compared the phenotype of the LAK precursor induced by delectinated T-cell growth factor (TCGF) to that induced by rIL-2. The 211-depleted population, which was devoid of NK cells and LAK precursors (inducible by rIL-2), was capable of generating LAK activity when TCGF was used as the source of lymphokine. LAK cells induced by TCGF from the 211-depleted population lysed a fresh sarcoma and an NK-resistant cultured melanoma tumor target but not the Daudi cell line, which was lysed by rIL-2-induced LAK cells. Lymphoid subpopulations, depleted using NKH1a mAb, behaved similarly, generating high levels of lysis against the two solid tumor targets when cultured with TCGF but not with rIL-2. CD 3-depleted populations showed enrichment for LAK precursors using either rIL-2 or TCGF. These results indicate that while rIL-2-induced LAK precursors cannot be separated from cells with NK activity, TCGF-induced LAK cells can be generated from populations of peripheral blood mononuclear cells without NK activity.  相似文献   

4.
Summary The co-culture of human peripheral blood mononuclear cells (PBMC) with high concentrations of interleukin 2 normally generates lymphokine-activated killer (LAK) cells capable of indiscriminate lysis of tumor targets. However, the addition of certain cell-line-derived tumor cells to the LAK generation cultures within the first 48 h of culture initiation resulted in the suppression of the LAK cytotoxicity measured after 3–4 days of culture. Suppression could be achieved with tumor cell:PBMC ratios as low as 1:50 when tumor cells were derived from melanoma and colorectal cancer (G361, COLO320, HT-29), but suppression was not observed with cells from the breast cancer cell line SKBr3. No suppression of LAK generation was observed with normal epithelial cells from colon or breast, with autologous or allogeneic lymphoblasts, or with allogeneic vascular endothelial cells. Suppression was independent of the removal of adherent cells from PBMC, could not be prevented by indomethacin and was not attributable to interleukin 2 absorption/adsorption by tumor cells. The suppressive activity of some tumor cells could be augmented by preculture in recombinant gamma interferon. Serum-free supernatants from G361, COLO320 and HT-29 (but not SKBr3 or endothelial cells) were also highly suppressive towards the generation of LAK cells. The elaboration by tumor cells of fractors capable of inhibiting LAK generation may partially explain the failure of LAK/interleukin 2 therapy in some experimental and clinical protocols.  相似文献   

5.
The permanent pancreas carcinoma cell line, PCI-24, was developed in order to analyse cytokine regulation on pancreas carcinoma and lymphokine-activated killer (LAK) cell interaction. PCI cells expressed ICAM-1 and HLA-ABC, but not HLA-DR antigens. PCI cells showed augmented ICAM-1 and HLA-ABC expression when incubated with interferon (IFN) and tumour necrosis factor . A similar but weak augmentary effect on the HLA-ABC and ICAM-1 surface expression was seen with interleukin-1 treatment. Natural attachment of LAK to PCI cells was augmented by recombinant IFN in close association with ICAM-1 up-regulation on PCI cells. In addition, natural attachment was significantly inhibited by anti-LFA-1 and anti-ICAM-1 antibody treatments. Cytotoxicity of the LAK cells against PCI cells was also significantly inhibited with the same treatment. Thus, the attachment of LAK cells to PCI cells through LFA-1/ICAM-1 molecules appeared to be essential for the cytotoxicity for PCI cells. Pretreatment of PCI cells, but not of LAK cells, with IFN or other cytokines resulted in a decrease of susceptibility for LAK cell cytotoxicity. The decreased susceptibility inversely correlated with HLA-ABC expression on the PCI cells. The collective evidence indicates that, although LAK cell attachment to pancreas carcinoma cells through the LFA-1/ICAM-1 molecule is augmented by IFN, IFN treatment of pancreas carcinoma cells reduces LAK cell cytotoxicity possibly through an increase in HLA-ABC or a regulation of molecules closely associated to HLA-ABC expression.  相似文献   

6.
We have generated lymphokine-activated killer (LAK) cells from human thymocytes in order to assess the relationship between LAK cells and T cells. Fresh thymocytes lack natural cytotoxic activity, and cytotoxicity cannot be stimulated by short term (1 hr) incubation with interferon or recombinant interleukin 2 (rIL-2). In addition, thymocytes are phenotypically devoid of cells bearing the natural killer (NK)-associated markers cluster designation (CD) 16 and NKH-1. After culture for 5 to 8 days with rIL-2, thymocytes display high levels of cytotoxic activity against both NK-sensitive and NK-resistant targets. Thymocytes require slightly more IL-2 than do peripheral blood lymphocytes to generate LAK activity. We have examined the phenotype of the thymocyte LAK precursor and effector cells. Thymocyte LAK precursors are of low to medium density, CD1-negative, and predominantly CD3-negative. Although CD3-positive cells proliferate in response to rIL-2, they are low in cytolytic capabilities. The effector cells, like the LAK precursors, are low to medium density lymphocytes. The cytotoxic cells are predominantly CD3-negative, and cytotoxic activity cannot be blocked with the use of anti-CD3 monoclonal antibodies. The effector cells also lack most NK-associated markers (HNK-1, and the CD16 markers Leu-11b and B73.1) but possess the NK-associated marker NKH-1 (N901). The responsive cell appears to be at a very early stage of thymic development, and it does not appear to either require or express the CD3-T cell receptor complex.  相似文献   

7.
Summary Incubation of human lymphocytes with recombinant interleukin-2 (rIL-2) results in the generation of lymphokine-activated killer (LAK) cells capable of lysing a wide variety of tumor cells. The present study was undertaken to examine the effect of recombinant interferon (rIFN-) on LAK cell cytotoxicity generated from different peripheral blood mononuclear cell (PBMC) subpopulations. When unseparated PBMC were stimulated by rIL-2 and rIFN-, the latter induced a transient enhancement after 2 days followed by a suppression of LAK cell cytotoxicity at day 6. Enhancement of LAK cell cytotoxicity was moderate and inconstant, whereas the inhibition was strong and observed with all the donors tested. This suppression was not associated with a decrease in the [3H]thymidine uptake. PBMC depleted of adherent cells were more sensitive to the stimulation by rIL-2 and the induced cytotoxicity was not modified by rIFN-. Monocyte-enriched plastic-adherent cells, when incubated with rIL-2 and rIFN-, became cytotoxic after 2–3 days of culture and inhibited LAK cell activity after 5–6 days. Collectively, our results suggest that rIFN- affects LAK cell cytotoxicity through the activation of plastic-adherent, monocyte-rich, cells which modulate natural killer cells, first in a positive, then in a negative way.  相似文献   

8.
Monomeric IgG (mIgG) has been previously shown to inhibit human natural killer (NK) cell activity when effector cells were treated prior to the cytotoxic assay. In the present study the interaction between negative regulation by mIgG and positive regulation by interleukin-2 (IL-2) was examined. Although a dose-dependent boosting of NK activity was found upon incubation of nonadherent lymphocytes (NAL) with recombinant or natural IL-2 for 2 h at 37 degrees C, the NK effector cells remained responsive to down-regulation to mIgG. However, when NAL were treated with IL-2 under supraoptimal conditions (higher doses and longer periods of incubation than required for optimal boosting of NK activity) the subsequent addition of mIgG had a significantly reduced inhibitory effect. This partial resistance to suppression by inhibitory IgG was observed only when the second treatment was performed without washing the IL-2-pretreated effector cells. Moreover, addition of antihuman interferon gamma antibodies during the incubation of NAL with IL-2 almost abolished the loss of responsiveness of the IL-2-activated killer cells to mIgG-induced inhibition. These data provide additional evidence for the ability of interferon gamma to reverse or block the down-regulation of NK activity by mIgG.  相似文献   

9.
The generation of lymphokine-activated killer (LAK) cells in vitro has been reported to require 100-1000 units of recombinant interleukin-2 (IL2). In this study we investigated the generation of human LAK cells with low-dose IL2 (1-10 U) in combination with human tumor cell lines. A significant LAK activity was generated within 3- to 5-days culture of PBL. Among six human tumor cell lines tested, the K562 cell line had the greatest stimulating activity, and the degree of cytotoxicity was comparative to that of PBL stimulated with higher doses of IL2 alone. The origin of this LAK activity was primarily the E(-) rosetting cell population. Cocultures of E- cells with 1 U/ml IL2 plus K562 had significantly higher cytotoxicity (P less than 0.05) compared to using E+ cells. Phenotypic analysis indicated that 1 U/ml IL2 plus K562 cell stimulation enhanced CD56+ and CD16+ cells. These studies suggest that very low dosages of IL2 with stimulator tumor cells can generate LAK activity comparable to that generated with high dosages of IL2 alone.  相似文献   

10.
Lymphokine-activated killer (LAK) cells generated by cultivation of C57BL/6 mouse spleen cells in the presence of recombinant interleukin-2 were transferred into natural killer (NK) cell-deficient suckling mouse recipients. These mice were then challenged with either murine cytomegalovirus (MCMV) or lymphocytic choriomeningitis (LCMV) and sacrificed 3 days later. No interleukin 2 infusions were given. Mice receiving as few as 5 x 10(5) LAK cells had several 100-fold decreases in spleen MCMV titers as compared with untreated mice. This treatment had no effect on spleen LCMV titers. The LAK cell cultures contained 10 to 17% NK 1.1+, 50 to 55% Lyt-2+, and 33 to 50% immunoglobulin D+ cells. Double fluorescence labeling and in vitro cytotoxicity assays with fluorescence-activated cell sorting revealed at least two mutually exclusive killer cell populations. NK 1.1+ LAK cells resembled freshly isolated activated NK cells with regard to target cell range (YAC-1 cell killing greater than L-929, P815, and EL-4 cell killing), large granular lymphocyte (LGL) morphology, and decreased ability to lyse interferon (IFN)-treated target cells. Lyt-2+ LAK cells lysed the targets mentioned above but at lower levels and without the differences in susceptibility mentioned above. These Lyt-2+ LAK cells also had a decreased ability to lyse IFN-treated targets, in contrast to classic cytotoxic T lymphocytes, which lyse IFN-treated targets far more efficiently than untreated targets. Purified populations of LAK cells obtained by fluorescence-activated cell sorting were used in the antiviral protection model. The results showed that protection against MCMV could be mediated by NK 1.1+, NK 1.1-, Lyt-2+, Lyt-2-, and IgD- populations but not by IgD+ cells. The five protective populations all had in common the LGL phenotype and cytotoxic activity in vitro. The IgD+ population did not contain LGLs, lyse target cells in vitro, or mediate an antiviral effect in vivo. These results suggest that LAK cells may be therapeutically useful against certain virus infections (MCMV) but not others (LCMV) and that despite their heterogeneity in antigenic phenotype and cytotoxic activity, their pattern of antiviral activity in vivo resembles that of NK cells, which protect against MCMV but not LCMV.  相似文献   

11.
 Colony-stimulating factors (CSF) are used clinically in the treatment of chemotherapy-induced myelosuppression and in support of bone marrow transplantation. As CSF are known to have pleiotropic functions, their effects on cellular cytotoxicity were analysed in vitro against bladder carcinoma cell lines. By means of an L-[3H]methionine-release assay, the cytotoxicity of peripheral blood mononuclear cells against the natural-killer(NK)-cell-resistant bladder carcinoma cell lines BT-A and SBC-7 was measured using different effector/target-cell ratios. Costimulatory effects of granulocyte-colony-stimulating factor (G-CSF), granulocyte/macrophage-colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and stem cell factor (SCF) on the generation of lymphokine-activated killer (LAK), bacillus Calmette-Guérin-activated killer (BAK) and natural killer (NK) cell cytotoxicity were investigated in this assay. Furthermore, the effect of CSF on proliferation of urothelial tumor cells in vitro was determined by a [3H]thymidine DNA-labelling technique. GM-CSF, but not G-CSF, IL-3 or SCF, was able to increase NK, BAK and LAK cytotoxicity in a dose-dependent manner. No acceleration of carcinoma cell proliferation was evident under the conditions of our assay. These data indicate the costimulatory effect of GM-CSF on cellular cytotoxicity, which might be used for immunotherapeutic purposes. Received: 30 July 1996 / Accepted: 20 December 1996  相似文献   

12.
Summary We have compared the ability of natural killer (NK) cells from two substrains of C3H mice that differ with respect to their susceptibility to the development of mammary adenocarcinomas to lyse fresh syngeneic mammary tumor cells. Single cell suspensions of mammary tumors from retired breeder females were used as targets in 22-h 51Cr-release cytotoxicity assays with syngeneic NK cells. Tumor cell suspensions were prepared by enzymatic digestion of finely minced tissue followed by centrifugation through a discontinuous Percoll gradient. Effector cells were prepared by passing spleen cells over nylon wool followed by centrifugation through Percoll fraction 7. Syngeneic NK cells had significant levels of lysis against 5/8 tumors studied. NK cells from low risk animals (C3Heb/FeJ) consistently demonstrated greater cytotoxicity against tumor cell preparations than did effectors from the high tumor substrain (C3H/OuJ). Study of cytocentrifuge preparations stained with Wright-Giemsa revealed that the two substrains were identical with respect to the number of azurophilic granules present in the cytoplasm of their NK cells. We have also shown that lymphokine-activated killer (LAK) cells can be generated from splenocytes in C3H mice. While LAK cells from both substrains were capable of lysing fresh syngeneic mammary tumor cells in vitro, LAK cells from the animals at high risk for the formation of mammary adenocarcinomas had greater cytotoxicity against tumor cell suspensions than LAK cells from the low tumor substrain.  相似文献   

13.
The mechanisms of lysis of endothelial cells derived from human umbilical vein (HUVEC) by autologous lymphokine-activated killer (LAK) cells, generated from cord blood lymphocytes of the same donor, were investigated. Freshly isolated HUVEC as well as HUVEC cultured for several passages were efficiently lysed by autologous LAK cells, and their susceptibility to the LAK cells was almost the some as that of allogenic HUVEC. Complement-depletion experiments revealed that the lysis was mainly dependent on CD16-natural killer (NK) LAK cells. Pretreatment of HUVEC with recombinant interferon (rIFN) for 24 h made them resistant to lysis by autologous LAK cells, while pretreatment with either rIL-1. rTNF, or acidic or basic fibroblast growth factor did not alter the lytic sensitivity of HUVEC. The resistance of rIFN-treated HUVEC was specific to lysis by CD16+ NK LAK cells, and their lysis by CD3+ T-LAK cells was not significantly altered. Moreover, in comparison with control HUVEC or rIL-1-treated HUVEC, rIFN-treated HUVEC had a significantly less potent inhibitory effect on the lysis of untreated HUVEC, when used as an unlabeled target. This suggests that rIFN treatment may down-regulate the recognition of some molecules on HUVEC by rIL-2-activated NK cells. These data suggest that damage of the endothelium during LAK therapy is mainly dependent on LAK cells with a NK phenotype that can specifically recognize a certain molecule on autologous endothelial cells.  相似文献   

14.
Summary The natural killer (NK) and lymphokine-activated killer (LAK) cell activities of peripheral blood lymphocytes from chronic myeloid leukemia (CML) patients in remission and from healthy donors have been studied. Regression analysis to compare both cytotoxic responses in individual donors and the frequency of LAK cell precursors was also carried out. About 42% of CML patients in remission showed low NK activity (less than the mean percentage NK activity of healthy donors — 2 SD) and were categorised as low NK responders. The stage of remission or the drugs used to bring about remission did not influence the NK status. The LAK activity of low NK as well as normal NK responder CML patients was significantly low against the NK-sensitive K562 cell line and the NK-resistant VIP (melanoma) and T-24 (bladder carcinoma) tumor targets, as assessed by linear regression analysis. Allogeneic leukemic cells were more resistant to killing, especially by patients' LAK cells. The frequency analysis of LAK cell precursors revealed a significant reduction in the LAK cell progenitor frequency in CML patients in remission.  相似文献   

15.
Summary We have shown that depletion of monocytes from human peripheral blood mononuclear cells (PBMC) byl-phenylalanine methyl ester (PheOMe) enhanced lymphokine-activated killer cell (LAK) generation by recombinant interleukin-2 (rIL-2) at high cell density. In this study, we have investigated the mechanism of action of PheOMe on LAK activation by using trypsin, chymotrypsin, tosylphenylalaninechloromethanol (TPCK, a chymotrypsin inhibitor), tosyl-l-lysinechloromethane (TLCK, a trypsin inhibitor), phenylalaninol (PheOH), and benzamidine. PBMC were treated with 1–5 mM PheOMe for 40 min at room temperature in combination with the various agents, washed and assessed for their effects on natural killer (NK) activity against K562 cells and monocyte depletion. The treated cells were then cultured with or without rIL-2 for 3 days. LAK cytotoxicity was assayed against51Cr-labeled K562 and Raji tumor target cells. TPCK at 10 µg/ml partially inhibited depletion of monocytes by PheOMe. TLCK did not prevent depletion of monocytes nor inhibition of NK activity induced by PheOMe. TPCK and TLCK inhibited NK activity by themselves. TPCK but not TLCK inhibited rIL-2 induction of LAK cells. On the other hand, PheOH and benzamidine (analogs of PheOMe) lacked any effect on monocyte depletion but abrogated the inhibitory effect of PheOMe on NK activity. They had no effect on rIL-2 activation of LAK activity enhanced by PheOMe. Trypsin potentiated the inhibitory effect of PheOMe on NK activity and monocyte depletion. Trypsin partially inhibited IL-2 activation of LAK activity enhanced by PheOMe. Chymotrypsin had little effect on NK activity but prevented the inhibitory effect of PheOMe on NK activity. It had little effect on monocyte depletion induced by PheOMe. PheOMe was hydrolysed by monocytes and chymotrypsin to Phe and methanol as determined by HPLC. TPCK inhibited hydrolysis of PheOMe by monocytes. Our data suggest that the effects of PheOMe on monocytes, NK cells and LAK activation involve protease activities of monocytes.  相似文献   

16.
Summary Chloroethylnitrosoureas have been used widely to treat human and experimental animal tumors. We have earlier observed that >90% of the mice transplanted with syngeneic tumors survive following treatment with nitrosoureas such as 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and furthermore, they resist subsequent challenge with the same tumor. The present investigation was initiated to determine the mechanism by which BCNU brings about this effect. Treatment of tumor cell targets in vivo or in vitro with BCNU, increased their susceptibility to macrophage (MØ)-mediated cytotoxicity as measured in a direct cytotoxicity assay or in an antibody-dependent cell-mediated cytotoxicity (ADCC) assay. In contrast, the antitumor cytotoxicity caused by cytotoxic T lymphocytes (CTL), natural killer (NK) cells, or lymphokine-activated killer (LAK) cells, was not altered following BCNU treatment of tumor targets. Studies were also conducted to investigate the direct effect of BCNU in vivo on various cytotoxic effector cells. For this purpose, MØ, NK, LAK, and CTL activities from BCNU-treated-tumor-bearing mice were screened for cytotoxicity against untreated tumor targets in vitro. It was observed that tumor-specific CTL and LAK cell activity increased in BCNU-treated tumor-bearing mice when compared to untreated controls while the cytotoxic potential of NK cells and MØs was not altered. The present study suggests that antitumor drugs such as BCNU are not only tumoricidal but also selectively act in a variety of ways at both the effector and target cell level, leading to overall enhanced antitumor immunity and high rate of cures from the syngeneic tumor challenge.The work at Virginia Polytechnic Institute and State University was supported by NIH grants CA45009 and CA45010 and by a Biomedical Research Support Grant. The work at University of Kentucky was supported by NIH grants CA34052 and CA33629 and by a grant from the Tobacco and Health Institute  相似文献   

17.
To investigate natural killer (NK) and lymphokine-activated killer (LAK) cell functions from 10 healthy dogs and 29 dogs with a variety of spontaneous neoplasms, large granular lymphocytes (LGLs) from blood samples were separated by a 58.5% Percoll density gradient. LGLs were stimulated with a low dose of recombinant human interleukin 2 (rhIL-2) for 7 days. Cytotoxicity of effector cells against the susceptible CTAC cell line was measured before and after stimulation. Compared with those before stimulation, the percentage of LGLs after stimulation with rhIL-2 was found to be significantly increased (P<0.01) in both dogs with tumors and controls. However, the increase was significantly higher in control animals, indicating a defect in proliferation ability of NK cells in canine tumor patients. After stimulation with rhIL-2, lymphokine-activated killer (LAK) cell activity in dogs with tumors was significantly lower (P<0.01) when compared with controls. Reduced cytotoxicity of rhIL-2–activated NK cells in dogs with tumors seems to be attributable to the presence of a diminished proliferative capacity of NK cells and a decreased ability of LAK cells to lyse target cells. Further knowledge of the precise function of IL-2–activated NK cells in dogs with tumors may help to optimize new and therapeutically beneficial treatment strategies in canine and human cancer patients. Our findings suggest that the dog could also serve as a relevant large animal model for cancer immunotherapy with IL-2.  相似文献   

18.
Summary Little is known regarding the effectors of lymphokine-activated killer activity. Lysosomotropic agents such as quinacrine can be used to positively sort for lysosome rich cells in natural killer (NK) cell populations. We therefore decided to use this agent to sort lymphokine-activated killer (LAK) cells to characterize their lysosomal content. We found that the positively sorted population contained all the LAK activity, i.e., lysis of NK-resistant tumor cells (B16 melanoma cell line), with the negatively sorted cells having no killing activity. Therefore separation of interleukin-2-incubated cells for LAK activity could be accomplished using sorting after quinacrine staining. The treatment of positively sorted LAK cell populations with L-leucine methyl ester, a lysosomotropic dye which inhibits killing by lysosome rich cells, caused abrogation of killing of the B16 tumor by the treated populations. Single cell conjugate assays were also done on these sorted cells, with positively sorted cells forming the highest and negatively sorted cells the lowest percent of conjugates. Our data therefore indicates the important role of lysosome rich cells in the LAK cell population in the murine system.This work was supported by NIH grants R01 CA42962 and K04 CA0122, and by intramural funds from the Norris Cancer Center  相似文献   

19.
Murine lymphokine-activated killer (LAK) cells were generated from spleen cells of C57/BL6 mice by culture of spleen cells in vitro for 72 hours in medium containing 500 units/ml recombinant human interleukin 2 (IL-2), and effects of these LAK cells on proliferation of syngenic myeloid progenitor cells (CFU-GM) were observed. After 3 days culture, LAK cells were assayed for their cytotoxicity in a 4 hours 51Cr-release test. Either natural killer (NK) cell sensitive YAC-1 lymphoma cells or NK cell resistant LP-3 and WEHI-164 fibrosarcoma cells were efficiently lysed by murine LAK cells. When LAK cells were added into culture system in a final concentration of 5 x 10(4)/ml, 2 x 10(5)/ml, 8 x 10(5)/ml, CFU-GM were increased by 55.2%, 165.5%, and 194.4% of control respectively. LAK-CM also showed augmentative effect on CFU-GM growth. When 10% (v/v) of LAK-CM were added into culture system, CFU-GM were increased by 51.4% of control, but LAK-CM alone could not stimulate CFU-GM growth. Again, effects of LAK-BMC interaction on CFU-GM formation were investigated. CFU-GM were inhibited to 27.6% of control when 1 x 10(5) BMC were mixed with 8 x 10(5) LAK cells and incubated for 4 hours prior to CFU-GM culture. These data suggest that (1) LAK cells may secrete co-CSF which showed synergistic effect with CSF on CFU-GM proliferation: (2) When LAK cells contact with BMC, they showed significant cytotoxicity to myeloid progenitor cells which mediated decrease of CFU-GM formation.  相似文献   

20.
Enhancement by interferon of natural killer cell activity in mice.   总被引:11,自引:0,他引:11  
Injection of mice with several interferon inducers, Newcastle Disease virus, polyinosinic-polycytidylic acid and tilorone resulted in an increase in spleen cell cytotoxicity for 51chromium-labeled mouse YAC tumor target cells in 4-hr in vitro assays. This increase in spleen cell cytotoxicity was abrogated by injection of mice with potent anti-mouse interferon globulin. Inoculation of mice with mouse interferon (but not human leucocyte or mock interferon preparations) also resulted in a marked enhancement of spleen cell cytotoxicity. The extent of enhancement of spleen cell cytotoxicity was directly proportional to the amount of interferon injected and a significant increase was observed after inoculation of as little as 103 to 104 units of interferon. An effect could be detected as soon as 1 hr after injection of interferon. The increase of spleen cell cytotoxicity after inoculation of an interferon inducer was not due to a localization and accumulation of cytotoxic cells in the spleen but reflected a general increase in cytotoxic cell activity in various lymphoid tissues (except the thymus). The splenic cytotoxic cells from interferon or interferon-inducer-injected mice had the characteristics of natural killer (NK) cells since (i) interferon enhanced spleen cell cytotoxicity in athymic (nu/nu) nude mice, (ii) classical spleen cell fractionation procedures by nylon wool columns, anti-Thy 1.2 serum plus complement, anti-Ig columns, and depletion of FcR+ rosette-forming cells, failed to remove the effector cells generated in vivo or in vitro. Therefore like NK cells, interferon-induced cytotoxic cells lack the surface markers of mature T and B lymphocytes, are not adherent, and are devoid of avid Fc receptors. Furthermore like NK cells, the spleen cells from interferon-treated mice lysed various target cells (known for their sensitivity to NK cells) without H-2 or species restriction. Incubation in vitro of normal spleen cells with interferon also resulted in an increase in cytotoxicity for YAC tumor cells. We conclude that interferon acts directly on NK cells and enhances the inherent cytotoxic activity of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号