首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net rate constants that define the steady-state rate through a sequence of steps and the corresponding effective energy barriers for two (PO3-)-transfer steps in the phosphoglucomutase reaction were compared as a function of metal ion, M, where M = Mg2+ and Cd2+. These steps involve the reaction of either the 1-phosphate or the 6-phosphate of glucose 1,6-bisphosphate (Glc-P2) bound to the dephosphoenzyme (ED) to produce the phosphoenzyme (EP) and the free monophosphates, glucose 1-phosphate (Glc-1-P) or glucose 6-phosphate (Glc-6-P): EP.M + Glc-1-P----ED.M.Glc-P2----EP.M.Glc-6-P6. Before this comparison was made, net rate constants for the Cd2+ enzyme, obtained at high enzyme concentration via 31P NMR saturation-transfer studies [Post, C. B., Ray, W. J., Jr., & Gorenstein, D. G. (1989) Biochemistry (preceding paper in this issue)], were appropriately scaled by using the observed constants to calculate both the expected isotope-transfer rate at equilibrium and the steady-state rate under initial velocity conditions and comparing the calculated values with those measured in dilute solution. For the Mg2+ enzyme, narrow limits on possible values of the corresponding net rate constants were imposed on the basis of initial velocity rate constants for the forward and reverse directions plus values for the equilibrium distribution of central complexes, since direct measurement is not feasible. The effective energy barriers for both the Mg2+ and Cd2+ enzymes, calculated from the respective net rate constants, together with previously values for the equilibrium distribution of complexes in both enzymic systems [Ray, W. J., Jr., & Long, J. W. (1976) Biochemistry 15, 4018-4025], show that the 100-fold decrease in the kappa cat for the Cd2+ relative to the Mg2+ enzyme is caused by two factors: the increased stability of the intermediate bisphosphate complex and the decreased ability to cope with the phosphate ester involving the 1-hydroxyl group of the glucose ring. In fact, it is unlikely that the efficiency of (PO3-) transfer to the 6-hydroxyl group of bound Glc-1-P (thermodynamically favorable direction) is reduced by more than an order of magnitude in the Cd2+ enzyme. By contrast, the efficiency of the Li+ enzyme in the same (PO3-)-transfer step is less than 4 x 10(-8) that of the Mg2+ enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Actin mediated release of ATP from a myosin-ATP complex.   总被引:2,自引:0,他引:2  
J A Sleep  R L Hutton 《Biochemistry》1978,17(25):5423-5430
The apparent second-order rate constant, ka-2, of actin binding to a myosin-ATP state (M*.ATP) and releasing ATP to the medium has been determined by two methods. The first was the measurement of the amount of ATP released when actin was added to the intermediate state, M*.ATP; the second was the measurement of oxygen exchange between ATP and HOH. A quantitative treatment of ATP in equilibrium HOH exchange is given to allow extraction of elementary rate constants from the data. Agreement between the two methods was good and at low ionic strength and 23 degrees C, ka-2 is 6 X 10(5) M-1 s-1 which is about one-third the value of the apparent second-order rate constant, ka4, of actin binding to the myosin product state (M**.ADP.Pi). The determination of ka-2 allows a lower limit of 6 s-1 to be placed upon the first-order rate of ATP release from AM.ATP. This is to be compared with a value of less than or equal to 1.5 X 10(-4) s-1 for the equivalent steps of the myosin scheme; thus actin enhances the rate by a factor of 4 X 10(4) or more. A greater proportion of the bound ATP is released to the medium as ATP with increasing actin concentration. This reflects the contribution to rate limitation at saturating actin concentration of steps between myosin states dissociated from actin.  相似文献   

3.
M A Geeves 《Biochemistry》1989,28(14):5864-5871
The equilibrium and dynamics of the interaction between actin, myosin subfragment 1 (S1), and ADP have been investigated by using actin which has been covalently labeled at Cys-374 with a pyrene group. The results are consistent with actin binding to S1.ADP (M.D) in a two-step reaction, A + M.D K1 equilibrium A-M.D K2 equilibrium A.M.D, in which the pyrene fluorescence only monitors the second step. In this model, K1 = 2.3 X 10(4) M-1 (k+1 = 4.6 X 10(4) M-1 s-1) and K2 = 10 (k+2 less than or equal to 4 s-1); i.e., both steps are relatively slow compared to the maximum turnover of the ATPase reaction. ADP dissociates from both M.D and A-M.D at 2 s-1 and from A.M.D at greater than or equal to 500 s-1; therefore, actin only accelerates the release of product from the A.M.D state. This model is consistent with the actomyosin ATPase model proposed by Geeves et al. [(1984) J. Muscle Res. Cell Motil. 5, 351]. The results suggest that A-M.D cannot break down at a rate greater than 4 s-1 by dissociation of ADP, by dissociation of actin, or by isomerizing to A.M.D. It is therefore unlikely to be significantly occupied in a rapidly contracting muscle, but it may have a role in a muscle contracting against a load where the ATPase rate is markedly inhibited. Under these conditions, this complex may have a role in maintaining tension with a low ATP turnover rate.  相似文献   

4.
Studies of the interaction between actin and myosin subfragment 1 (S1) in solution have shown that the association reaction takes place in at least two steps. Initially the association is relatively weak to form a complex called the A state which can then isomerize to the R state. The rate and equilibrium constants for the isomerization have been measured and are shown to depend upon the nucleotide bound to the S1 ATPase site; with ATP bound the A state is preferred but as ATP is hydrolysed and the products are sequentially released then the complex gradually shifts to the A state. An extensive series of experiments have characterized the A-to-R isomerization both in solution and in contracting muscle fibres and have shown it to be closely associated with the key events in the ATP-driven contraction cycle: the conformational change from the A to the R state can be monitored by fluorescent probes on either actin or the nucleotide; the isomerization can be perturbed by increases in hydrostatic pressure; the actin-induced acceleration of the rate of product release from myosin is coupled to the A-to-R isomerization; tropomyosin may control actin and myosin interaction by controlling the isomerization step and finally pressure perturbations of contracting muscle fibres shows there to be a close coupling between the isomerization of acto.S1 and the force generating event of muscle contraction.  相似文献   

5.
The effective rate of dissociation of 1-N6-ethenoadenosine diphosphate (epsilon ADP) from the regulated actin X subfragment 1 X epsilon ADP complex of rabbit skeletal muscle is approximately 10-15 times smaller in the absence of calcium ion compared to the presence of calcium ion. The decrease in fluorescence emission with dissociation of the bound epsilon ADP fitted two exponential terms. The evidence is consistent with a kinetic scheme in which two first-order transitions precede the dissociation step: (Formula: see text) where D is epsilon ADP, A is regulated actin, M is subfragment 1, the asterisks refer to the degree of fluorescence enhancement, and AM(D) is a collision complex in equilibrium with free epsilon ADP. Both rate constants k-2 and k-1 were reduced approximately 15-fold in the absence of calcium ion. The rate constants for the dissociation of epsilon ATP, epsilon ADP X Pi, formed in the enzyme cycle, and epsilon ADP are all reduced in the absence of calcium ion; consequently, the primary effect in calcium regulation of the actin-subfragment 1 ATPase is on the rate constant of a transition (or transitions) between actomyosin-nucleoside phosphate complexes.  相似文献   

6.
G Wang  M Kawai 《Biophysical journal》1996,71(3):1450-1461
The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas.  相似文献   

7.
The effect of Ca2+ on the interaction of bovine cardiac myosin subfragment 1 (S-1) with actin regulated by cardiac troponin-tropomyosin was evaluated. The ratios of actin to troponin and to tropomyosin were adjusted to optimize the Ca2+-dependent regulation of the steady-state actin-activated magnesium adenosinetriphosphatase (MgATPase) rate of myosin S-1. At 25 degrees C, pH 6.9, 16 mM ionic strength, the extrapolated values for maximal adenosine 5'-triphosphate (ATP) turnover rate at saturating actin, Vmax, were 6.5 s-1 in the presence of Ca2+ and 0.24 s-1 in the absence of Ca2+. In contrast to this 27-fold regulation of ATP hydrolysis, there was negligible Ca2+-dependent regulation of cardiac myosin S-1 binding to actin. In the presence of ATP, the dissociation constant of regulated actin and cardiac myosin S-1 was 32 microM in the presence of Ca2+ and 40 microM in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. These dissociation constants are indistinguishable from the concentrations of actin needed to reach half-saturation of the myosin S-1 MgATPase rates, 37 microM actin in the presence of Ca2+ and 53 microM in its absence. Although there may be Ca2+-dependent regulation of cross-bridge binding in the intact heart, the present biochemical studies suggest that cardiac regulation critically involves other parts of the cross-bridge cycle, evidenced here by almost complete Ca2+-mediated control of the myosin S-1 MgATPase rate even when the myosin S-1 is actin-bound.  相似文献   

8.
Transient kinetic data of ATP binding and cleavage by cardiac myosin subfragment 1 (S1) were obtained by fluorescence stopped flow and analyzed by using computer modeling based on a consecutive, reversible two-step mechanism: (formula: see text) where M1 and M12 denote myosin species with enhanced fluorescence and K'O = K0/(K0[ATP] + 1). The kinetic constants K0, k12, k23, and k32 and the fractional contributions of M1 and M12 to the total fluorescence are analyzed over a range of systematically varied solution parameters. The initial ATP binding equilibrium (K0), which decreases with increasing pH, is facilitated by a positively charged protein residue with a pK of 7.1. An active-site charge of +1.5 is determined from the ionic strength dependence. The rate constants k12, k23, and k32 also exhibit pK's near neutrality but increase with increasing pH. The majority of the large (-54 kJ/mol) negative free energy of ATP binding occurs upon S1 isomerization, k12, and a large increase in entropy (183 J/kmol at 15 degrees C) is associated with the cleavage step. The equilibrium constant for the cleavage step, K2, is determined as 3.5 at pH 7.0, 15 degrees C, and 200 mM ionic strength. There are no significant changes in fractional contributions to total fluorescence enhancement due to solvent-dependent conformational changes of S1 in these data. When values for the combined rate constants are calculated and compared with those determined by graphical analysis, it is observed that graphical analysis overestimates the binding rate constant (K0k12) by 25% and the hydrolysis rate constant (k23 + k32) by as much as 30%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Interactions between Ca2+, calmodulin and turkey gizzard myosin light chain kinase have been studied by equilibrium gel filtration and analyzed in terms of the theory of free energy coupling as formulated by Huang and King for calmodulin-regulated systems (Current Topics in Cellular Regulation 27, 1966-1971, 1985). Direct binding studies revealed that upon interaction with the enzyme, calmodulin acquires strong positive cooperativity in Ca2+-binding. The determination of the Ca2+-binding constants is inherently approximative due to the apparent homotropic cooperativity; therefore a statistical chi 2 analysis was carried out to delimit the formation-, and subsequently the stoichiometric Ca2+-binding constants. Whereas the first two stoichiometric Ca2+-binding constants of enzyme-bound CaM do not differ or are at the upmost 10-fold higher than those in free calmodulin, the third Ca2+ ion binds with an at least 70-fold and more likely 3000-fold higher affinity constant. The binding constant for the fourth Ca2+ is only 5-fold higher than the corresponding one in free calmodulin, thus creating a plateau at 3 bound Ca2+ in the isotherm. Direct binding of Ca2+-free calmodulin to myosin light chain kinase at 10(-7) M free Ca2+ yielded a l/l stoichiometry and an affinity constant of 2.2 x 10(5) M-1. It is thus anticipated that in resting smooth muscle ([Ca2+] less than or equal to 10(-7) M) more than half of the enzyme is bound to metal-free calmodulin. Analysis of the enzymatic activation of myosin light chain kinase at different concentrations of calmodulin and Ca2+ revealed that this Ca2+-free complex is inactive and that activation is concomitant with the formation of the enzyme.calmodulin.Ca3 complex.  相似文献   

10.
The heat of binding of rabbit skeletal myosin subfragment 1 (myosin-S1) and heavy meromyosin (HMM) to F-actin has been measured by batch calorimetry. Proton release measurements in unbuffered solutions indicate that less than 0.1 mol of protons is absorbed or released per mol of myosin head bound to actin. Hence, the measured heats are approximately equal to the enthalpy of myosin-S1 and HMM binding to actin. The enthalpy of binding of myosin-S1 to actin was +22 +/- 3 and +27 +/- 5 kJ/mol of myosin-S1 in two series of experiments at 12 degrees C and +26 +/- 5 kJ/mol of myosin-S1 at 0 degrees C, indicating that delta Cp for this reaction in the range of 0-12 degrees C is small (-80 J/mol/K). The enthalpy of binding of HMM to actin at 12 degrees C was found to be +26 +/- 1 kJ/mol of myosin head. The enthalpies determined here and the equilibrium constants obtained from the literature for measurements at 20 degrees C under identical solvent conditions were used to estimate the entropy of the association of myosin S1 and HMM with F-actin: +235 J/mol/K for myosin-S1 and +190 J/mol of myosin head/K for HMM. Thermodynamic parameters of the interaction of myosin-S1 with actin and ADP or AMP-PNP can be evaluated using the enthalpy of association of myosin-S1 with actin determined here, together with literature values for the equilibrium constants and enthalpies of binding of these nucleotides to myosin-S1. The calculated enthalpies of binding of ADP or AMP-PNP to actomyosin-S1 are small and negative.  相似文献   

11.
The fluorescence properties of Dictyostelium discoideum (Dd) myosin II constructs containing a single tryptophan residue have revealed detailed information regarding nucleotide binding and hydrolysis steps. Here we extend these studies to investigate the influence of actin on nucleotide-induced fluorescence transients. The fluorescence from native actin tryptophan residues is not significantly perturbed on binding to myosin, although an apparent signal is detected as a consequence of a light scatter artifact. Actin has a minor effect on the response of W129, located at the entrance to the nucleotide-binding pocket, and reduces the forward rate constants for the isomerization(s) associated with binding of ATP, ATPgammaS, and ADP by 3-fold or less. The isomerization detected by W129 clearly precedes the dissociation of actin in the case of ADP and ATPgammaS binding. The fluorescence from the conserved W501 residue, located at the distal end of the relay helix, is very sensitive to the switch 2 and/or lever arm disposition. Consequently, the observed fluorescence emission intensity can be used to estimate the equilibrium constant between the pre- and post-power stroke conformations. Actin modulates this equilibrium by no more than 2-fold in the presence of nucleoside triphosphate. These data have implications for the mechanism of product release and suggest that actin activates another process in the mechanism, such as switch 1 movement and Pi release, rather than influencing the switch 2 equilibrium and lever arm position directly.  相似文献   

12.
T L Hill 《Biochemistry》1975,14(10):2127-2137
In earlier papers on muscle contraction it was found very useful to relate the actual (not standard) free energy levels of the different states in the biochemical diagram of the myosin cross-bridge to the first-order rate constants governing transitions between these states and to the details of the conversion of ATP free energy into mechanical work. This same approach is applied here to other macromolecular biochemical systems, for example, carriers in active transport, and simple enzyme reactions. With the definition of free energy changes between states of diagram used here (and in the muscle papers), the rate constants of the diagram are firat order, the macromolecular transitions are effectively isomeric, the equilibrium constants are dimensionless, the free energy changes are directly related to first-order rate constant ratios, and the ratio of products of forward and backward rate constants around any cycle of the diagram is related to operational free energy changes (e.g. the in vivo free energy of ADP HYDROLYSIS). These general points are illustrated by means of particular arbitrary models, especially transport models. In contrast to the muscle case, the free energy conversion question in other biochemical systems can be handled at the less detailed, complete-cycle level rather than at the elementary transition level. There is a corresponding complete-cycle kinetics, with composite first-order rate constants for the different possible cycles (in both directions). An introductory stochastic treatment of cycle kinetics is included.  相似文献   

13.
Local helix-coil transitions in the coiled coil portion of myosin have long been implicated as a possible origin of tension generation in muscle. From a statistical mechanical theory of conformational transitions in coiled coils, the free energy required to form a randomly coiled bubble in the hinge region of myosin of the type conjectured by Harrington (Harrington, W. F., 1979, Proc. Natl. Acad. Sci. USA, 76:5066-5070) is estimated to be approximately 25 kcal/mol. Unfortunately this is far more than the free energy available from ATP hydrolysis if the crossbridges operate independently. Thus, in solution such bubbles are predicted to be absent, and the theory requires that the rod portion of myosin be a hingeless, continuously deforming rod. While such bubble formation in vivo cannot be entirely ruled out, it appears to be unlikely. We further conjecture that in solution the swivel located between myosin subfragments 1 and 2 (S-2 and S-1) is due to a locally random conformation of the chains caused by the presence of a proline residue at the point that physically separates the coiled coil from the globular portion of myosin. On attachment of S-1 to actin in the strong binding state, the configurational entropy of the random coil in the swivel region is greatly reduced relative to the case where the ends are free. This produces a spontaneous coil-to-helix transition in the swivel region that causes rotation of S-1 and the translation of actin. Thus, the model predicts that the actin filaments are pushed rather than pulled past the thick filaments by the crossbridges. The specific mechanism of force generation is examined in detail, and a simple statistical mechanical realization of the model is proposed. We find that the model gives a substantial number of qualitative and at times quantitative predictions in accord with experiment, and is particularly appealing in that it provides a simple means of free energy transduction--the well known fact that topological constraints shift the equilibrium between helical and random coil states.  相似文献   

14.
The reactions of pyrene-labeled actin with myosin subfragment 1 (S1) and S1-ligand complexes at low ionic strength are described by the schemes [formula: see text] where M refers to a myosin head; A is actin; L is ligand; the asterisk refers to a high fluorescence state of actin; and K1 and K3 are association constants. K1 is reduced approximately 10-fold for M.ADP or M.pyrophosphate versus M alone. The rate constant of the isomerization step (k2) is 150-200 s-1 for A*M, A*M.ADP, and A*M-pyrophosphate (20 degrees C). The interaction between the ligand the actin binding sites reduces K2 from 2,000 for A*M to 50-100 for A*M.ADP and to approximately unity for A*M-pyrophosphate. The A*M.ADP state is equated with the AM'.ADP state of Sleep and Hutton (Sleep, J., A., and Hutton, R. L. (1980) Biochemistry 19, 1276-1283).  相似文献   

15.
The effects of selected nucleotides (N) on the binding of myosin subfragment 1 (S-1) and pure F-actin (A) were measured by time-resolved fluorescence depolarization for 0.15 M KCl, pH 7.0 at 4 degrees. The association constants K'A, KN, and K'N in the scheme (see article), were determined for the magnesium salts of ADP, adenyl-5'-yl imidodiphosphate AMP-P(NH)P, and PPi. The nucleotide binding site on S-1 was "mapped" with respect to its interaction on the actin binding site. The subsites were the beta- and gamma-phosphoryl groups of ATP bind had the largest effects. A quantitative measure of the interaction, the interaction free energy, was defined as -RT ln (KA/K'A). For ADP, K'A was 2.7 X 10(5) M-1 and the interaction free energy was -4.67 kJ M-1. For AMP-P(NH)P and PPi it was much larger. A ternary complex was shown to exist for ADP, S-1, and actin in the presence of Mg2+ and evidence from AMP-P(NH)P and PPi measurements indicated that ATP also likely forms a ternary complex. The mechanism of (S-1)-actin dissociation is discussed in light of these results.  相似文献   

16.
Application of the myosin competition test (Lehman, W., and Szent-Gy?rgyi, A. G. (1975) J. Gen. Physiol. 66, 1-30) to chicken gizzard actomyosin indicated that this smooth muscle contains a thin filament-linked regulatory mechanism. Chicken gizzard thin filaments, isolated as described previously (Marston, S. B., and Lehman, W. (1985) Biochem. J. 231, 517-522), consisted almost exclusively of actin, tropomyosin, caldesmon, and an unidentified 32-kilodalton polypeptide in molar ratios of 1:1/6:1/26:1/17, respectively. When reconstituted with phosphorylated gizzard myosin, these thin filaments conferred Ca2+ sensitivity (67.8 +/- 2.1%; n = 5) on the myosin Mg2+-ATPase. On the other hand, no Ca2+ sensitivity of the myosin Mg2+-ATPase was observed when purified gizzard actin or actin plus tropomyosin was reconstituted with phosphorylated gizzard myosin. Native thin filaments were rendered essentially free of caldesmon and the 32-kilodalton polypeptide by extraction with 25 mM MgCl2. When reconstituted with phosphorylated gizzard myosin, caldesmon-free thin filaments and native thin filaments exhibited approximately the same Ca2+ sensitivity (45.1 and 42.7%, respectively). The observed Ca2+ sensitivity appears, therefore, not to be due to caldesmon. Only trace amounts of two Ca2+-binding proteins could be detected in native thin filaments. These were identified as calmodulin (present at a molar ratio to actin of 1:733) and the 20-kilodalton light chain of myosin (present at a molar ratio to actin of 1:270). The Ca2+ sensitivity observed in an in vitro system reconstituted from gizzard thin filaments and either skeletal myosin or phosphorylated gizzard myosin is due, therefore, to calmodulin and/or an unidentified minor protein component of the thin filaments which may be an actin-binding protein involved in regulating actin filament structure in a Ca2+-dependent manner.  相似文献   

17.
The species and amounts of intermediates formed by myosin in myofibrils during the ATPase reaction under relaxed conditions were examined. The amount of total nucleotides (ADP + ATP) bound to myofibrils, determined by a centrifugation method or a rapid filtration method, was 0.86 mol/mol myosin head. The amount of bound ADP, determined as the ADP remaining in the mixture after free ADP had been rapidly converted into ATP by an ATP-regenerating system, was found to be 0.67 mol/mol myosin head. We examined the time courses of free-Pi and total-Pi (TCA-Pi) formation after adding ATP to the myofibrils. The amount of Pi bound to myofibrils, calculated by subtracting the burst size of free Pi (0.23 mol/mol myosin head) from that of TCA-Pi (0.60 mol/mol myosin head), was found to be 0.37 mol/mol myosin head. The amount of tightly bound ATP determined by an ATP-quenching method was very low (0.03 mol/mol myosin head). If there is no myosin-phosphate complex, then the amounts of the myosin-phosphate-ADP complex, MADPP, and the tightly bound myosin-ATP complex, M*ATP, are 0.37 and 0.03 mol/mol myosin head, respectively, whereas the amounts of myosin-ADP and loosely bound myosin-ATP complexes are 0.30 and 0.16 mol/mol myosin head, respectively. Thus, half of the myosin heads forms MADPP or M*ATP, and the equilibrium between MADPP and M*ATP shifts to the MADPP side. These results agree with those obtained for myosin in solution (Inoue, A., Takenaka, H., Arata, T., & Tonomura, Y. (1979) Adv. Biophys. 13, 1-194). Therefore, in relaxed myofibrils the active site of myosin does not interact with actin.  相似文献   

18.
The actin-myosin lattice spacing of rabbit psoas fibers was osmotically compressed with a dextran T-500, and its effect on the elementary steps of the cross-bridge cycle was investigated. Experiments were performed at the saturating Ca (pCa 4.5-4.9), 200 mM ionic strength, pH 7.0, and at 20 degrees C, and the results were analyzed by the following cross-bridge scheme: [formula: see text] where A = actin, M = myosin head, S = MgATP, D = MgADP, and P = Pi = phosphate. From MgATP and MgADP studies on exponential process (C) and (D), the association constants of cross-bridges to MgADP (K0), MgATP (K1a), the rate constants of the isomerization of the AM S state (k1b and k-1b), and the rate constants of the cross-bridge detachment step (k2 and k-2) were deduced. From Pi study on process (B), the rate constants of the cross-bridge attachment (power stroke) step (k4- and k-4) and the association constant of Pi ions to cross-bridges (K5) were deduced. From ATP hydrolysis measurement, the rate constant of ADP-isomerization (rate-limiting) step (k6) was deduced. These kinetic constants were studied as functions of dextran concentrations. Our results show that nucleotide binding, the ATP-isomerization, and the cross-bridge detachment steps are minimally affected by the compression. The rate constant of the reverse power stroke step (k-4) decreases with mild compression (0-6.3% dextran), presumably because of the stabilization of the attached cross-bridges in the AM*DP state. The rate constant of the power stroke step (k4) does not change with mild compression, but it decreases with higher compression (> 6.3% dextran), presumably because of an increased difficulty in performing the power stroke. These results are consistent with the observation that isometric tension increases with a low level of compression and decreases with a high level of compression. Our results also show that the association constant K5 of Pi with cross-bridge state AM*D is not changed with compression. Our result further show that the ATP hydrolysis rate decreased with compression, and that the rate constants of the ADP-isomerization step (k6) becomes progressively less with compression. The effect of compression on the power stroke step and rate-limiting step implies that a large-scale molecular rearrangement in the myosin head takes place in these two slow reaction steps.  相似文献   

19.
Structural rearrangements of the myosin upper-50 kD subdomain are thought to play a key role in coordinating actin binding with nucleotide hydrolysis during the myosin ATPase cycle. Such rearrangements could open and close the active site in opposition to the actin-binding cleft, helping explain the opposing affinities of myosin for actin and nucleotide. To directly examine conformational changes across the active site during the ATPase cycle we have genetically engineered a mutant of chicken smooth-muscle myosin, F344W motor domain essential light chain, which contains a single tryptophan (344W) located on a short loop between two alpha helixes that traverse the upper-50 kD subdomain in front of the active site. Fluorescence resonance energy transfer was examined between the 344W donor probe and 2'(3')-O-(N-methylanthraniloyl) (mant)-nucleotide acceptor probes in the active site of this construct. The observed fluorescence resonance energy transfer efficiencies were 6.4% in the presence of mant ADP and 23.8% in the presence of mant ATP, corresponding to distances of 33.4 A and 24.9 A, respectively. Our results are consistent with structural rearrangements in which there is an 8.5-A closure between the 344W residue and the mant moiety during the transition from the strongly (ADP) to weakly (ATP) actin-bound states of the myosin ATPase cycle.  相似文献   

20.
The motor protein myosin binds actin and ATP, producing work by causing relative translation of the proteins while transducing ATP free energy. Smooth muscle myosin has one of four heavy chains encoded by the MYH11 gene that differ at the C-terminus and in the active site for ATPase due to alternate splicing. A seven-amino-acid active site insert in phasic muscle myosin is absent from the tonic isoform. Fluorescence increase in the nucleotide sensitive tryptophan (NST) accompanies nucleotide binding and hydrolysis in several myosin isoforms implying it results from a common origin within the motor. A wild-type tonic myosin (smA) construct of the enzymatic head domain (subfragment 1 or S1) has seven tryptophan residues and nucleotide-induced fluorescence enhancement like other myosins. Three smA mutants probe the molecular basis for the fluorescence enhancement. W506+ contains one tryptophan at position 506 homologous to the NST in other myosins. W506F has the native tryptophans except phenylalanine replaces W506, and W506+(Y499F) is W506+ with phenylalanine replacing Y499. W506+ lacks nucleotide-induced fluorescence enhancement probably eliminating W506 as the NST. W506F has impaired ATPase activity but retains nucleotide-induced fluorescence enhancement. Y499F replacement in W506+ partially rescues nucleotide sensitivity demonstrating the role of Y499 as an NST facilitator. The exceptional response of W506 to active site conformation opens the possibility that phasic and tonic isoforms differ in how influences from active site ATPase propagate through the protein network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号