首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Tamm-Horsfall glycoprotein preparations were obtained from calf urine by 1.0 M NaCl precipitation followed by 4 M urea/Sepharose 4B chromatography. By using 0.1% sodium dodecyl sulfate polyacrylamide gel electrophoresis a molecular weight of 86 500 +/- 4500 (n = 12) was calculated for the glycoprotein. Amino acid and carbohydrate analyses were performed, the carbohydrate composition being (in residues per 100 amino acid residues in the glycoprotein): fucose, 0.90; galactose, 4.82; mannose, 4.63;N-acetylglucosamine, 7.36; N-acetylgalactosamine, 1.38; sialic acid, 2.93. Under conditions of mild acid hydrolysis (0.05 M H2SO4, 80 degrees C, 1 h) the calf Tamm-Horsfall glycoprotein preparations were degraded partially into two lower molecular weight fragments (approximate Mr 66 000 and 51 000), as shown by polyacrylamide gel electrophoresis, both fragments being periodic acid-Schiff reagent positive.  相似文献   

2.
alpha-D-Galactosidase was isolated from untoasted soybean meal and purified to homogeneity by affinity chromatography on N-epsilon-aminoacaproyl alpha-D-galactopyranosylamine-Sepharose. The purified enzyme destroyed the B-specificity of human ovarian cyst B-glycoprotein with an accompanying increase in H-specificity, and converted human type-B erythrocytes to type O. The enzyme consists primarily of a tetramer, molecular weight 150 000 +/- 5 000 at pH 4.0 and of a monomer, molecular weight 40 000 +/- 3 000 at pH 8.0. Polyacrylamide gel electrophoresis in dodecyl sulfate at pH 7.2 distinguished between two types of monomeric unit of similar molecular weight. N-terminal alanine was identified as the sole N-terminal amino acid residue. The enzyme was shown to be devoid of carbohydrate.  相似文献   

3.
Using RACE techniques we have cloned and sequenced one of the hamster liver 3-hydroxy-hexobarbital dehydrogenases which catalyze not only cyclic alcohols but also 17β-hydroxy-steroids and 3α-hydroxysteroids. The gene specific primers to 3-hydroxyhexobarbital dehydrogenase 1 (G2) were synthesized on the basis of its partial peptide sequences. The sequence of full length cDNA generated by 3′- and 5′-RACE PCR consisted of 1225 nucleotides including an open reading frame of 972 nucleotides encoding a protein of 323 amino acids. The deduced amino acid sequence matched exactly with the partial peptide sequences of hamster liver 3-hydroxyhexobarbital dehydrogenase 1 (G2). The sequence showed 84.5% identity to mouse liver 17β-dehydrogenase(A-specific), and 74–76% identity to human liver bile acid binding protein/3α-hydroxysteroid dehydrogenase (DD2), human liver 3α-hydroxysteroid dehydrogenase type I (DD4) and type II (DD3), and rabbit ovary 20α-hydroxysteroid dehydrogenase. The protein contains catalytic residues of aldo-keto reductases, Asp50, Tyr55, Lys84, His117. These results suggest that the hamster liver 3-hydroxyhexobarbital/17β(3α)-hydroxysteroid dehydrogenase belongs to aldo-keto reductase superfamily. The insert containing the full-length cDNA of 3-hydroxyhexobarbital dehydrogenase and vector specific overhang produced by PCR was annealed with pET-32 Xa/LIC vector. The plasmid was transformed into BL21 (DE3) cells containing pLysS. The recombinant enzyme was induced 1 mM IPTG. The expressed enzyme was produced as fusion protein and purified by nickel chelating affinity chromatography followed by POROS CM column chromatography and superdex 75 gel filtration. Molecular weight of the recombinant enzyme fused thioredoxin and his•tag was about 55 000 and that was 35 000 after Factor Xa protease treatment. The recombinant enzyme dehydrogenated 3-hydroxy-hexobarbital, 1-acenaphthenol, 2-cyclohexen-1-ol, testosterone, glycolithocholic acid as well as the native enzyme purified from hamster liver.  相似文献   

4.
C P Zimmerman  A M Gold 《Biochemistry》1983,22(14):3387-3392
Glycogen branching enzyme was isolated from rabbit liver. The highly purified enzyme shows a monomer molecular weight of 71 000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and apparent molecular weights of 93 000 by sucrose density gradient sedimentation and 52 000 by gel-exclusion chromatography on Sephacryl S-300. No glucosamine, mannosamine, galactosamine, or sialic acid was detected in the protein. An amino acid analysis is reported. The spectrum of branching enzyme is that of a simple polypeptide, with A1%280nm = 24.6. Highly purified branching enzyme consists of several closely related active enzyme forms that can be resolved by isoelectric focusing in polyacrylamide gel. The major species of pI 5.7 is flanked by less abundant forms of pI 5.6 and 5.8. Seemingly identical enzyme forms are observed in crude extracts of rabbit liver, skeletal muscle, brain, and heart, although the absolute and relative concentrations vary among the tissues. Branching enzyme apparently does not exhibit tissue-specific isoenzymes.  相似文献   

5.
A highly purified (approximately 12 000-fold) homogeneous preparation of human plasma lecithin:cholesterol acyltransferase (LCAT) with 16% yield was obtained by a combination of density ultracentrifugation, high density lipoprotein affinity column chromatography, hydroxylapatite chromatography, and finally chromatography on anti-apolipoprotein D immunoglobulin-Sepharose columns to remove apolipoprotein D. This enzyme preparation was homogeneous by the following criteria: a single band by polyacrylamide gel electrophoresis in 8 M urea; a single band on sodium dodecyl sulfate gel electrophoresis with an apparent molecular weight of 68 000 +/- 1600; a single protein peak with a molecular weight of 70 000 on a calibrated Sephadex G-100 column. Its amino acid composition was different from human serum albumin and all other apoproteins isolated from lipoprotein fractions.  相似文献   

6.
Using RACE techniques we have cloned and sequenced one of the hamster liver 3-hydroxy-hexobarbital dehydrogenases which catalyze not only cyclic alcohols but also 17beta-hydroxy-steroids and 3alpha-hydroxysteroids. The gene specific primers to 3-hydroxyhexobarbital dehydrogenase 1 (G2) were synthesized on the basis of its partial peptide sequences. The sequence of full length cDNA generated by 3'- and 5'-RACE PCR consisted of 1225 nucleotides including an open reading frame of 972 nucleotides encoding a protein of 323 amino acids. The deduced amino acid sequence matched exactly with the partial peptide sequences of hamster liver 3-hydroxyhexobarbital dehydrogenase 1 (G2). The sequence showed 84.5% identity to mouse liver 17beta-dehydrogenase(A-specific), and 74-76% identity to human liver bile acid binding protein/3alpha-hydroxysteroid dehydrogenase (DD2), human liver 3alpha-hydroxysteroid dehydrogenase type I (DD4) and type II (DD3), and rabbit ovary 20alpha-hydroxysteroid dehydrogenase. The protein contains catalytic residues of aldo-keto reductases, Asp50, Tyr55, Lys84, His117. These results suggest that the hamster liver 3-hydroxyhexobarbital/17beta(3alpha)-hydroxysteroid dehydrogenase belongs to aldo-keto reductase superfamily. The insert containing the full-length cDNA of 3-hydroxyhexobarbital dehydrogenase and vector specific overhang produced by PCR was annealed with pET-32 Xa/LIC vector. The plasmid was transformed into BL21 (DE3) cells containing pLysS. The recombinant enzyme was induced 1 mM IPTG. The expressed enzyme was produced as fusion protein and purified by nickel chelating affinity chromatography followed by POROS CM column chromatography and superdex 75 gel filtration. Molecular weight of the recombinant enzyme fused thioredoxin and his*tag was about 55000 and that was 35000 after Factor Xa protease treatment. The recombinant enzyme dehydrogenated 3-hydroxy-hexobarbital, 1-acenaphthenol, 2-cyclohexen-1-ol, testosterone, glycolithocholic acid as well as the native enzyme purified from hamster liver.  相似文献   

7.
Carbon monoxide dehydrogenase from acetate-grown cells of Methanosarcina barkeri exists in a high molecular weight form (approximately 3 X 10(6)) under conditions of high ionic strength but is converted to a much smaller form by dialysis. The enzyme was purified by a procedure which exploits isolation of the aggregated form by gel filtration and subsequent dissociation. Following this, the enzyme was purified to within 92% of homogeneity by chromatography on phenyl-Sepharose and finally on hydroxylapatite. Due to the extreme oxygen lability of the enzyme, the entire procedure was carried out within the anaerobic laboratory at the National Institutes of Health. The enzyme has an alpha 2 beta 2 oligomeric structure composed of subunits with molecular weights of 19,700 and 84,500. The amino acid compositions of the individual subunits were determined. Analysis of the metal content by plasma emission spectroscopy indicated 1.3 +/- 0.3 (n = 4) nickel and 15.6 +/- 5.6 (n = 5) iron per mol of alpha 2 beta 2. The enzyme did not contain significant amounts of cobalt or molybdenum. Ferredoxin, FAD, FMN, 2,3,5-triphenyltetrazolium chloride, methyl viologen, and phenazine methosulfate served as electron acceptors; however, the enzyme failed to reduce NAD+, NADP+, or the 8-hydroxy-5-deazaflavin factor F420. The optimum pH was between 7 and 9. The apparent Km for methyl viologen was 7.1 mM, whereas the value for 2,3,5-triphenyltetrazolium chloride was below 0.5 mM. Strong inhibition was observed by oxygen and cyanide. Inactivation by glyoxaldehyde required enzymatic turnover which suggested that a reactive group was formed, or exposed, on an enzyme intermediate in catalysis. A high degree of thermostability was noted. Carbon monoxide, however, rendered the enzyme more susceptible to temperature inactivation.  相似文献   

8.
D J McKay  K J Stevenson 《Biochemistry》1979,18(21):4702-4707
Lipoamide dehydrogenase (EC 1.6.4.3) has been isolated from a total homogenate of frozen mycelium of the thermophilic fungus Malbranchea pulchella var. sulfurea by a three-step procedure involving ammonium sulfate fractionation, Procion Brilliant Blue M-R--Sepharose 4B chromatography, and hydroxylapatite chromatography. The second step is the key purification step with the Procion Brilliant Blue M-R dye acting as an affinity ligand for the enzyme. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The enzyme is a dimer of molecular weight 102 000, and each monomer of 51 000 molecular weight binds one molecule of flavin adenine dinucleotide. Other properties determined include a pH optimum of 8.2, a strong specificity for the substrates dihydrolipoamide and nicotinamide adenine dinucleotide, the apparent lack of multiple enzymic forms, the presence of diaphorase activity, and resistance to temperature denaturation up to 60 degrees C. The amino acid composition and absorption spectrum of the enzyme were also determined. The properties of lipoamide dehydrogenase from this source are very similar to those reported for the enzyme from serveral other sources.  相似文献   

9.
Sheep liver cytoplasmic aldehyde dehydrogenase was purified to homogeneity to give a sample with a specific activity of 380 nmol NADH min(-1) mg(-1). An amino acid analysis of the enzyme gave results similar to those reported for aldehyde dehydrogenases from other sources. The isoelectric point was at pH 5.25 and the enzyme contained no significant amounts of metal ions. On the binding of NADH to the enzyme there is a shift in absorption maximum of NADH to 344 nm, and a 5.6-fold enhancement of nucleotide fluorescence. The protein fluorescence (lambdaexcit = 290 nm, lambdaemisson = 340 nm) is quenched on the binding of NAD+ and NADH. The enhancement of nucleotide fluorescence on the binding of NADH has been utilised to determine the dissociation constant for the enzyme . NADH complex (Kd = 1.2 +/- 0.2 muM). A Hill plot of the data gave a straight line with a slope of 1.0 +/- 0.3 indicating the absence of co-operative effects. Ellman's reagent reacted only slowly with the enzyme but in the presence of sodium dodecylsulphate complete reaction occurred within a few minutes to an extent corresponding to 36 thiol groups/enzyme. Molecular weights were determined for both cytoplasmic and mitochondrial aldehyde dehydrogenases and were 212 000 +/- 8 000 and 205 000 respectively. Each enzyme consisted of four subunits with molecular weight of 53 000 +/- 2 000. Properties of the cytoplasmic and mitochondrial aldehyde dehydrogenases from sheep liver were compared with other mammalian liver aldehyde dehydrogenases.  相似文献   

10.
Two isoenzymes of rat liver acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum) EC 3.1.3.2) have been purified to homogeneity, at least one of these for the first time. Both of the rat liver isoenzymes have identical specific activities towards p-nitrophenyl phosphate. Molecular weights of the native enzymes are 92 000 for rat liver isoenzyme I and 93 000 for isoenzyme II, while the subunit molecular weights are 51 000 and 52 000 respectively. Data on substrate specificity and pH dependence are presented for the homogeneous canine prostatic enzyme, which is also isolated as a dimeric enzyme of (native) molecular weight 89 000. Carbohydrate analysis data are presented for canine prostatic acid phosphatase and it is further noted that both isoenzymes of rat liver acid phosphatase are also glycoproteins. The amino acid compositions of the two rat liver isoenzymes are presented together with those of the similar dimeric acid phosphatase of human liver and of canine prostate. Comparison of these results with published data for the amino acid composition of human prostatic acid phosphatase shows substantial similarities. However, significant differences are seen in the amino acid composition of rat liver acid phosphatase isoenzyme I as compared to a previous literature report. Most notably, 17 histidine residues are found per mol of isoenzyme I and 18 for isoenzyme II.  相似文献   

11.
1. One mitochondrial and one cytoplasmic malate dehydrogenase isoenzyme could be purified from acetate grown cells of the yeast Saccharomyces cerevisiae. 2. The purification procedure uses chromatography on dextran blue columns as an essential step for enrichment, and reverse ammonium sulfate chromatography on celite for isoenzyme separation. 3. The homogeneity of the preparations was established by gel electrophoreses in the presence of sodium dodecylsulfate and by a sedimentation run in the analytical ultracentrifuge. 4. Both enzymes are dimers with a molecular weight of 75 000 for the cytoplasmic and of 68 000 for the mitochondrial enzyme. 5. Amino acid analysis and peptide mapping showed that both enzymes are closely related, but genetically different (true isoenzymes). 6. The cytoplasmic enzyme shows electrophoretic splitting. This is most likely due to post-translational deamination in vivo. 7. Antibodies to both isoenzymes could be obtained in rabbits. The antisera to cytoplasmic malate dehydrogenase were specific for this enzyme. Antisera to mitochondrial malate dehydrogenase react with both isoenzymes. Neither type of antisera precipitated an inactive protein after the glucose-dependent inactivation of cytoplasmic malate dehydrogenase in vivo.  相似文献   

12.
Highly purified preparations of glutamate dehydrogenase were obtained from mitochondrial and cytoplasmic fractions of rabbit liver by affinity chromatography on CL-Sepharose 4B modified by adenosine diphosphate. Some physico-chemical properties of the purified enzymes (e. g., specific activity, molecular weight, quaternary structure, stability against denaturating effect of urea, pH optimum of catalyzed reactions, Km values for substrates and coenzymes) were found to be identical. The sole difference was detected in the ability of enzyme preparations to be activated by adenosine diphosphate. The activation of the cytoplasmic enzyme is 160%, that of mitochondrial glutamate dehydrogenase is 230-240% under the same conditions.  相似文献   

13.
Glutaryl-CoA dehydrogenase, a multifunctional enzyme responsible for dehydrogenation and decarboxylation of glutaryl-CoA to crotonyl-CoA, has been purified 1,680-fold from porcine liver mitochondria. The purified porcine enzyme has a subunit molecular weight of 47,800 and a native molecular weight of 190,500. Porcine glutaryl-CoA dehydrogenase catalyzed the conversion of [1,5-14C]glutaryl-CoA to [14C] crotonyl-CoA and 14CO2 in a 1:1:1 ratio. The porcine enzyme has Km values for electron transfer flavoprotein and glutaryl-CoA of 1.1 and 3.3 microM, respectively, and turnover numbers of 860 mol of electron transfer flavoprotein/min/mol of glutaryl-CoA dehydrogenase and 327 mol of glutaryl-CoA/min/mol of glutaryl-CoA dehydrogenase. Human glutaryl-CoA dehydrogenase has been purified 1,278-fold from human liver mitochondria. The purified human enzyme has a subunit molecular weight of 58,800 and a native molecular weight of 256,000. Human glutaryl-CoA dehydrogenase showed a reaction of only partial identity when compared to porcine glutaryl-CoA dehydrogenase by Ouchterlony double immunodiffusion analysis using antiserum raised against and monospecific for porcine glutaryl-CoA dehydrogenase.  相似文献   

14.
Glutamate dehydrogenase (EC. 1.4.1.3) has been purified more than 9,000 times from human placental alcoholic subfractions as a homogenous protein of 55,155 daltons (subunit molecular weight). Kinetic constants for the reverse reaction (reductive amination of α-ketoglutarate) have been shown to be similar to those of the bovine liver enzyme, while the kinetic constants for the forward reaction were markedly different as well as some regulatory properties (lack of activation by ADP in the reverse reaction). The amino acid composition differs from the bovine liver enzyme composition. Furthermore, the tryptic peptide patterns of the placental enzyme and the human liver enzyme have been compared. Besides the low specific activity of this enzyme, the results indicate that human placental glutamate dehydrogenase is closely related to other mammalian glutamate dehydrogenases.  相似文献   

15.
When Escherichia coli was grown in a minimum medium with glucose as sole carbon source and a proper level of ammonia, NADP+ specific glutamate dehydrogenase (L-glutamate: NADP+ oxidoreductase (deaminating), ED 1.4.1.4) was induced. The enzyme was solubilized by French press treatment and purified to homogeneity by (NH4)2SO4 fractionation, heat treatment followed by DEAE-cellulose, hydroxylapatite and Bio-Gel chromatography with an overall yield of 30%. The enzyme proved to be heat stable and relatively resistant to protein denaturants. The optimum of enzymic activity for the reductive amination is at pH 8 and at pH 9 for the oxidative deamination. The activity is affected by adenine nucleotides. The molecular weight (about 250 000 for the native form and 46 000 for the inactive subunit) and amino acid composition, suggest strict similarities with the NADP+ enzyme from fungal origin.  相似文献   

16.
Properties of mouse alpha-galactosidase.   总被引:2,自引:0,他引:2  
alpha-Galactosidase has been examined in various murine tissues using the substrate 4-methylumbelliferyl-alpha-galactoside. Mouse liver appears to contain a single major form of the enzyme, as judged by chromatography and electrophoresis. The enzmye was purified 467-fold with a yield of about 40% by a method involving chromatography on Concanavalin A-Sepharose. It has maximal activity at pH 4.2, a Km value of 1.4 mM, and energy of activation of 16 400 cal/mol, and a molecular weight of 150 000 at pH 5.2. It is inhibited at high concentrations of myoinositol and appears to contain N-acetylneuraminic acid. In these characteristics it resembles human alpha-galactosidase A. The enzyme from various tissues differs in electrophoretic mobility. After treatment with neuraminidase, however, the enzyme from all tissues comigrates as a single band of activity. By this criterion the alpha-galactosidase of liver is most heavily sialylated and that from kidney the least. As estimated by gel filtration, the enzyme from liver and kidney exists as species of molecular weight 320 000, 150 000 and 70 000, depending upon pH and ionic strength. This appears to be the result of aggregation of the enzyme, since the forms are interconvertible and under some conditions a single molecular weight species is observed. The liver enzyme is primarily lysosomal, while the kidney enzyme is distributed approximately equally between lysosomal and microsomal fractions.  相似文献   

17.
The purification of gamma-glutamyltransferase ((gamma-glutamyl)-peptide: amino acid gamma-glutamyltransferase, EC 2.3.2.2) from normal human liver is described. The procedure includes solubilization of enzyme from membranes using deoxycholate and Lubrol W, treatment with acetone and butanol, and affinity chromatography on immobilized concanavalin A. Treatment with papain was used to release the enzyme from aggregates of lipid and protein, prior to further purification. On overall purification of 9400 was achieved and analytical polyacrylamide gel electrophoresis indicated that the final product was homogeneous, and had a molecular weight of 110 000. Two subunits were identified on dodecyl sulfate gel electrophoresis with estimated molecular weights of 47 000 and 22 000. The kinetic properties studied for the purified enzyme were similar to those found for partially purified (not papain-treated) enzyme, and resembled those of serum gamma-glutamyltransferase. The true KM values for the liver enzyme were estimated to 0.81 mM for gamma-glutamyl-p-nitroanilide and to 12.4 mM for glycyl-glycine.  相似文献   

18.
Dihydroorotate dehydrogenase was purified to homogeneity from rat liver mitochondria by Triton X-100 solubilization, diethylaminoethyl cellulose chromatography and gel electrophoresis. The overall yield was 30 percent. The enzyme has a subunit molecular weight of 61, 000.  相似文献   

19.
We studied some of the biochemical and immunochemical properties of a major apolipoprotein in isolated pulmonary surfactant from dog and rat lungs. These apolipoproteins were purified by DEAE-cellulose chromatography in buffers containing Triton X-100. Purity of the apolipoproteins was assessed by both fused rocket and crossed immunoelectrophoreses. In addition, the apolipoproteins showed one band with an apparent molecular weight of 72 000-73 000 on SDS-polyacrylamide gel electrophoresis. These proteins are composed of two polypeptide chains of 36 000 daltons. When subjected to isoelectric focusing, the major component of the apolipoprotein had an isoelectric point of about 4.4, with very minor components near 4.6. Even though the apolipoproteins of both species had very similar amino acid compositions, including a relatively high glycine content, no immunologic cross-reactivity was observed. Rocket immunoelectrophoretic analysis of several preparations of dog and rat surfactant using the respective purified apolipoproteins as standards indicated that the apolipoprotein constituted 56.9% +/- 4.6. (S.D., n = 3) and 42.1% +/- 2.1 (S.D., n = 2) of the total protein in dog and rat surfactant, respectively.  相似文献   

20.
Native human renin, produced from the culture of human chorionic trophoblasts, has been purified to homogeneity on a milligram scale using a five-step purification scheme. The chorion cells secrete 50-200 milliGoldblatt Units of trypsin-activatable prorenin per ml into the medium. The pro-enzyme is partially purified by ammonium sulfate fractionation and chromatographies on QAE-Sephadex and cibracon blue-agarose. Following conversion of prorenin to the active enzyme by porcine trypsin, the renin is purified to homogeneity by affinity chromatography and gel filtration. Chorionic prorenin has a molecular weight of 43,000; the active enzyme 40,000. Both proteins exist as a single polypeptide chain as determined by SDS-polyacrylamide gel electrophoresis under reducing conditions. The average specific activity of six different preparations was found to be 1072 Goldblatt Units/mg. The amino acid composition and N-terminal sequence of the active enzyme has been determined and is identical to the human kidney enzyme. Microheterogeneity of chorionic renin was demonstrated by isoelectrofocusing analysis. The physical characterization of chorionic renin is compared with that reported for the human kidney enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号