首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenic Escherichia coli often carry determinants for several different adhesins. We show a direct communication between two adhesin gene clusters in uropathogenic E.coli: type 1 fimbriae (fim) and pyelonephritis-associated pili (pap). A regulator of pap, PapB, is a key factor in this cross-talk. FimB recombinase turns on type 1 fimbrial expression, and PapB inhibited phase transition by FimB in both off-to-on and on-to-off directions. On-to-off switching requiring FimE was increased by PapB. By analysis of FimB- and FimE-LacZ translational fusions it was concluded that the increase in on-to-off transition rates was via an increase in FimE expression. Inhibition of FimB-promoted switching was via a different mechanism: PapB inhibited FimB-promoted in vitro recombination, indicating that FimB activity was blocked at the fim switch. In vitro analyses showed that PapB bound to several DNA regions of the type 1 fimbrial operon, including the fim switch region. These data show that Pap expression turns off type 1 fimbriae expression in the same cell. Such cross-talk between adhesin gene clusters may bring about appropriate expression at the single cell level.  相似文献   

2.
3.
The phase variation of type 1 fimbriae in Escherichia coli is associated with the site-specific inversion of a short DNA element. Recombination at fim requires fimB and fimE , and their products are considered to be the fim recombinases. In this study, FimB and FimE were overproduced and extracts containing the proteins were shown to (i) bind to and (ii) invert the fim switch in vitro . Phenanthroline-copper protection of DNA–protein complexes showed that both FimB and FimE bind to half-sites that flank, and overlap with, the left and right inverted repeats (IRL and IRR, respectively) of the fim switch. Alignment of the four half-sites identified a conserved 5'-CA doublet; mutation of these two bases lowers the affinity of binding of both FimB and FimE to the inverted repeats, and greatly diminishes inversion of the fim switch in vivo . The specificity of the fim recombinases observed in vivo (FimB switching in both directions; FimE switching from on-to-off only) was maintained in vitro Furthermore, the different binding affinities of FimB and FimE for the various half-site combinations suggests that the specificity of FimE could arise, in part, from the low affinity of FimE for IRL (off).  相似文献   

4.
5.
6.
7.
Phase-variable expression of type 1 fimbriae in Escherichia coli K-12 involves inversion by site-specific recombination of a 314 bp sequence containing the promoter for fim structural gene expression. The invertible sequence is flanked by 9 bp inverted repeats, and each repeat is in turn flanked by non-identical recombinase-binding elements (RBEs) to which the FimB or FimE site-specific recombinases bind. These proteins have distinct DNA inversion preferences: FimB inverts the switch in the ON-to-OFF and OFF-to-ON directions with similar efficiencies, whereas FimE inverts it predominantly in the ON-to-OFF direction. We have found that FimB and FimE invert the switch through a common mechanism. A genetic investigation involving base-by-base substitution combined with a biochemical study shows that the same DNA cleavage and religation sites are used within the 9 bp inverted repeats, and that each recombination involves a common 3 bp spacer region. A comprehensive programme of RBE exchanges and replacements reveals that FimB is much more tolerant of RBE sequence variation than FimE. The asymmetric location of conserved 5'-CA motifs at either side of each spacer region allows the inside and outside of the switch to be differentiated while the RBE sequence heterogeneity permits its ON and OFF forms to be distinguished by the recombinases.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Escherichia coli Nissle 1917 has been used as a probiotic against intestinal disorders for many decades. It is a good colonizer of the human gut and has been reported to be able to express type 1 fimbriae. Type 1 fimbriae are surface organelles which mediate alpha-D-mannose-sensitive binding to various host cell surfaces. The expression is phase variable, and two tyrosine recombinases, FimB and FimE, mediate the inversion of the fimbrial phase switch. Current evidence suggests that FimB can carry out recombination in both directions, whereas FimE-catalyzed switching is on to off only. We show here that under liquid shaking growth conditions, Nissle 1917 did not express type 1 fimbriae, due to a truncation of the fimB gene by an 1,885-bp insertion element. Despite its fimB null status, Nissle 1917 was still capable of off-to-on switching of the phase switch and expressing type 1 fimbriae when grown under static conditions. This phase switching was not catalyzed by FimE, by truncated FimB, or by information residing within the insertion element. No further copies of fimB seemed to be present on the chromosome of Nissle 1917, suggesting that another tyrosine recombinase in Nissle 1917 is responsible for the low-frequency off-to-on inversion of the phase switch that is strongly favored under static growth conditions. This is the first report documenting the non-FimB- or non-FimE-catalyzed inversion of the fim switch.  相似文献   

15.
UL9, the origin binding protein of herpes simplex virus type 1, is a member of the SF2 family of helicases. Cotransfection of cells with infectious viral DNA and plasmids expressing either full-length UL9 or the C-terminal DNA binding domain alone results in the drastic inhibition of plaque formation which can be partially relieved by an insertion mutant lacking DNA binding activity. In this work, C-terminally truncated mutants which terminate at or near residue 359 were shown to potentiate plaque formation, while other C-terminal truncations were inhibitory. Thus, residues in the N-terminal region appear to regulate the inhibitory properties of UL9. To identify which residues were involved in this regulation, a series of N-terminally truncated mutants were constructed which contain the DNA binding domain and various N-terminal extensions. Mutants whose N terminus is either at residue 494 or 535 were able to bind the origin efficiently and were inhibitory to plaque formation, whereas constructs whose N terminus is at residue 304 or 394 were defective in origin binding activity and were able to relieve inhibition. Since UL9 is required for viral infection at early but not late times and is inhibitory to infection when overexpressed, we propose that the DNA binding activities of UL9 are regulated during infection. For infection to proceed, UL9 may need to switch from a DNA binding to a non-DNA binding mode, and we suggest that sequences residing in the N terminus play a role in this switch.  相似文献   

16.
17.
Abstract: We have previously described four genes encoding different Importin α-like proteins from Arabidopsis thaliana . Here we describe the putative nuclear export receptor for Importin α. Using protein interaction assays in the yeast two-hybrid system, we characterized an Arabidopsis protein showing high similarity to human CAS, the nuclear export receptor for Importin α. Arabidopsis CAS specifically bound to four different plant Importin α proteins but not to proteins containing leucine-rich nuclear export signals (NESs) that are recognized by Exportin 1 (XPO1/CRM1). Like all members of the Importin β family, Arabidopsis CAS also interacted with the regulatory GTPase Ran. Deletion of 15 amino acid residues from the amino terminus of CAS abolished binding of Importin α, but did not influence the interaction with the GTPase Ran. We found two regions of Importin α1 that profoundly influence the binding to CAS: the amino terminal Importin beta-binding (IBB) domain and the carboxy terminus. Whereas the IBB domain did not directly bind to CAS, but might rather affect the interaction through conformational changes within the Importin α protein, the carboxy terminal domain strongly interacted with CAS.  相似文献   

18.
Expression of type 1 fimbriae in Escherichia coli K-12 is phase variable and associated with the inversion of a short DNA element (switch). The fim switch requires either fimB (on-to-off or off-to-on switching) or fimE (on-to-off switching only) and is affected by the global regulators leucine-responsive regulatory protein (Lrp), integration host factor (IHF), and H-NS. Here it is shown that switching frequencies are regulated by both temperature and media and that these effects appear to be independent. fimE-promoted on-to-off switching occurs far more rapidly than previously estimated (0.3 per cell per generation in defined rich medium at 37 degrees C) and faster at lower than at higher temperatures. In direct contrast, fimB-promoted switching increases with temperature, with optima between 37 and 41 degrees C. Switching promoted by both fimB and fimE is stimulated by aliphatic amino acids (alanine, isoleucine, leucine, and valine), and this stimulation requires lrp. Furthermore, lrp appears to differentially regulate fimB- and fimE-promoted switching in different media.  相似文献   

19.
DEK蛋白C末端DNA结合域(简称CDB)是近年新发现的一个DEK蛋白与DNA的结合域,其中含有多个磷酸化位点,与DEK蛋白的功能密切相关。利用原核表达系统表达DEK蛋白的CDB肽段并进行纯化,具体为以pET30a(+)为载体质粒,E.coli BL21(DE3)为宿主细胞,构建重组基因工程菌,以IPTG诱导目的蛋白的表达,用NiNTA纯化的重组蛋白样品来进行SDSPAGE电泳分析,约在10.7kDa处出现明显的特征蛋白条带。凝胶迁移分析证实DEK蛋白C末端DNA结合域与DNA的结合倾向于与超螺旋型DNA相结合,同全长的DEK蛋白与DNA的结合具有类似的特点,表明DEK蛋白C末端DNA结合域在DEK蛋白与DNA的结合中可能具有一定的作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号