首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protocol was developed for Agrobacterium-mediated genetic transformation of niger [ Guizotia abyssinica (L.f.) Cass.] using hypocotyl and cotyledon explants. Hypocotyls and cotyledons obtained from 7-day-old seedlings were co-cultivated with Agrobacterium tumefaciens strain EHA101/pIG121Hm that harbored genes for beta-glucuronidase (GUS), kanamycin, and hygromycin resistance. Following co-cultivation, the hypocotyl and cotyledon explants were cultivated on MS medium containing 1 mg/l 6-benzylaminopurine (BA) for 3 days in darkness. Subsequently, hypocotyl and cotyledon explants were transferred to selective MS medium containing 1 mg/l BA, 10 mg/l hygromycin, 10 mg/l kanamycin, and 500 mg/l cefotaxime. After 6 weeks, hypocotyls and cotyledons produced multiple adventitious shoot buds, and these explants were subcultured to MS medium containing 1 mg/l BA, 30 mg/l hygromycin, and 30 mg/l kanamycin. After a further 3 weeks, the explants (along with developing shoot buds) were subcultured to MS medium containing 1 mg/l BA, 50 mg/l kanamycin, and 50 mg/l hygromycin for further selection. Transgenic plants were obtained after rooting on half-strength MS medium supplemented with 0.1 mg/l alpha-naphthaleneacetic acid, 50 mg/l kanamycin, and 50 mg/l hygromycin and were confirmed by GUS histochemical assay and polymerase chain reaction analysis. Genomic Southern blot hybridization confirmed the incorporation of the neomycin phosphotransferase II gene into the host genome.  相似文献   

2.
Han JS  Oh DG  Mok IG  Park HG  Kim CK 《Plant cell reports》2004,23(5):291-296
Using cotyledon explants excised from seedlings germinated in vitro, an efficient plant regeneration system via organogenesis was established for bottle gourd (Lagenaria siceraria Standl.). Maximum shoot regeneration was obtained when the proximal parts of cotyledons from 4-day-old seedlings were cultured on MS medium with 3 mg/l BA and 0.5 mg/l AgNO3 under a 16-h photoperiod. After 3–4 weeks of culture, 21.9–80.7% of explants from the five cultivars regenerated shoots. Adventitious shoots were successfully rooted on a half-strength MS medium with 0.1 mg/l IAA for 2–3 weeks. Flow cytometric analysis revealed that most of the regenerated plants derived from culture on medium with AgNO3 were diploid.  相似文献   

3.
The hypocotyls and cotyledons of the asepetic seedling of Brassica campestris ssp. chinensis L cv. Pudongaijiecai) were used as explants for tissue culture. Adventitious buds were differentiated on modified MS medium supplemented with TDZ 1-2 mg/L, NAA 0.2-1 mg/L and AgNO3 7.5 mg/L. The percentage of explants which formed buds of cotyledons was about 56%, and that of hypocotyls was about 37%. When the regenerated explants were transferred onto MS medium with 2 i.p. 5 mg/L and NAA 0.1 mg/L for two weeks, whole plantlets were obtained by culturing the regenerated shoots on 1/2 MS medium with NAA 0.1 mg/L. Agrobacterium tumefaciens strain (LBA 4404/PBI 121) carrying the GUS gene and Npt II gene was used for transformation. After 2 days of coculture, the hypocotyls and cotyledons were transferred onto regenerated medium containing CP 300 mg/L for bud formation. After 4-5 weeks, the differentiated buds were transferred onto selection medium with CP 200 mg/L and Km 10 mg/L for 1 month, then the green shoots were transferred onto the rooting medium containing Cef 100 mg/L and Km 20 mg/L. 4-5 weeks later, plantlets with Km resistance were obtained and some of them showed higher enzymatic activities of beta-glucuronidase than control ones.  相似文献   

4.
Sour cherry (Prunus cerasus L.) scion cv. Montmorency and rootstock cv. Gisela 6 (P. cerasus x P. canescens) were transformed using Agrobacterium tumefaciens strain EHA105:pBISN1 carrying the neomycin phosphotransferase gene (nptII) and an intron interrupted ss-glucuronidase (GUS) reporter gene (gusA). Whole leaf explants were co-cultivated with A. tumefaciens, and selection and regeneration of transformed cells and shoots of both cultivars was carried out for 12 weeks on selection medium containing 50 mg l(-1) kanamycin (Km) and 250 mg l(-1) timentin. These media were [Quoirin and Lepoivre (Acta Hortic 78:437-442, 1977)] supplemented with 0.5 mg l(-1) benzylaminopurine (BA) + 0.05 mg l(-1) indole-3-butyric acid (IBA), and woody plant medium [Lloyd and McCown (Proc Int Plant Prop Soc 30:421-427, 1980)] containing 2.0 mg l(-1) BA + 1.0 mg l(-1) IBA for cv. Montmorency and cv. Gisela 6, respectively. Seven out of 226 (3.1%) explants of cv. Montmorency and five out of 152 (3.9%) explants of cv. Gisela 6 produced 30/39 GUS- and PCR-positive shoots from the cut midribs via an intermediate callus. Southern analysis of the GUS- and PCR-positive transformants confirmed stable integration of the transgenes with 1-3 copy numbers in the genomes of seven lines of cv. Montmorency and five of cv. Gisela 6. The selected transformants have a normal phenotype in vitro.  相似文献   

5.
TransformationofOrychophragmusviolaceusUsingAgrobacteriumtumefaciensAndRegenerationofTransgenicPlantsa¥ZHOUJi-ming(周冀明);WEIZh...  相似文献   

6.
An efficient variety-independent method for producing transgenic eggplant (Solanum melongena L.) via Agrobacterium tumefaciens-mediated genetic transformation was developed. Root explants were transformed by co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBAL2 carrying the reporter gene beta-glucuronidase intron (GUS-INT) and the marker gene neomycin phosphotransferase (NPTII). Transgenic calli were induced in media containing 0.1 mg l(-1) thidiazuron (TDZ), 3.0 mg l(-1) N(6)-benzylaminopurine, 100 mg l(-1) kanamycin and 500 mg l(-1) cefotaxime. The putative transgenic shoot buds elongated on basal selection medium and rooted efficiently on Soilrite irrigated with water containing 100 mg l(-1) kanamycin sulphate. Transgenic plants were raised in pots and seeds subsequently collected from mature fruits. Histochemical GUS assay and polymerase chain reaction analysis of field-established transgenic plants and their offsprings confirmed the presence of the GUS and NPTII genes, respectively. Integration of T-DNA into the genome of putative transgenics was further confirmed by Southern blot analysis. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both the NPTII and GUS genes.  相似文献   

7.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

8.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

9.
The conditions of genetic transformation of cells in Astragalus sinicus were studied. The experimental results showed that Agrobacterium tumefaciens strain C58 (pKIW 105), when incubated in medium of low pH and low phosphate concentration in presence of acetosyringone could be induced and activated. When the activated bacteria were used to infect A. sinicus, the GUS gene transient expression in the hypocotyl protoplasts of A. sinicus was immediately and remarkably enhanced. This indicated that the vir gene of A. tumefaciens was activated under the above-mentioned incubation conditions which facilitated T-DNA transfer. In PEG-mediated DNA direct transfer, transient expression of GUS gene was promoted by higher pH and higher Ca2+ concentration of fusion medium. In the same experimental condition, expression of GUS gene under the control of MAS-CaMV 35S chimeric promoter was more effective than that under the control of CaMV 35S promoter, and intensity of GUS gene expression was positively correlated with the amount of foreign plasmid DNA in the range of 10--100 μg. Adventitious shoots were induced from cotyledon and hypocotyls explants treated with Agrobacterium turnefaciens strain PGV 2260 (pBI 121) and were subcultured on MS medium containing 50 mg/L kanamycin to select transformants, and then the transformed shoots were rooted. Stable expression of the foreign genes in the transformed plants was confirmed by assay of neomycin phosphotransferase Ⅱ (NPT Ⅱ ) and β-glucuronidase (GUS) activity.  相似文献   

10.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

11.
Herbicide-resistant transgenic Panax ginseng plants were produced by introducing the phosphinothricin acetyl transferase (PAT) gene that confers resistance to the herbicide Basta (bialaphos) through Agrobacterium tumefaciens co-cultivation. Embryogenic callus gathered from cotyledon explants of P. ginseng were pre-treated with 0.5 M sucrose or 0.05 M MgSO(4 )before Agrobacterium infection. This pre-treatment process markedly enhanced the transient expression of the beta-glucuronidase (GUS) gene. Embryogenic callus was initially cultured on MS medium supplemented with 400 mg/l cefotaxime for 3 weeks and subsequently subcultured five times to a medium containing 25 mg/l kanamycin and 300 mg/l cefotaxime. Somatic embryos formed on the surfaces of kanamycin-resistant callus. Upon development into the cotyledonary stage, these somatic embryos were transferred to a medium containing 50 mg/l kanamycin and 5 mg/l gibberellic acid to induce germination and strong selection. Integration of the transgene into the plants was confirmed by polymerase chain reaction and Southern analyses. Transfer of the transgenic ginseng plantlets to soil was successfully accomplished via acclimatization in autoclaved perlite. Not all of the plantlets survived in soil that had not been autoclaved because of fungal infection, particularly in the region between the roots and leaves. Transgenic plants growing in soil were observed to be strongly resistant to Basta application.  相似文献   

12.
In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants.  相似文献   

13.
Li D  Zhao K  Xie B  Zhang B  Luo K 《Plant cell reports》2003,21(8):785-788
Application of modern genetic manipulation has been limited in pepper ( Capsicum annuum L.) due to the lack of an efficient transformation system. Following the development of an efficient protocol for in vitro regeneration of pepper cotyledons, we investigated the key factors affecting transformation and established a highly efficient genetic transformation system using the pepper cotyledon as starting material. In this system, cotyledon explants are preconditioned for 2 days on kanamycin (km)-free DM1 medium [Murashige and Skoog (MS) salts/Gamborg B5 vitamins basal medium supplemented with 20 g/l sucrose, 5,000 mg/l DJ nutrients and a hormone combination of 1.0 mg/l indoleacetic acid (IAA) and 5.0 mg/l 6-benzyladenine (BA) solidified with 0.7% agar, pH 5.8], followed by co-cultivation with Agrobacterium tumefaciens on DM1 for 2 days and delay selection on DM1 with 500 mg/l carbenicillin (carb) for 2 days. The explants are then placed on DM1 containing 10 mg/l AgNO(3), 50 mg/l km-sulfate and 500 mg/l carb. After 4-5 weeks, the explants with buds are transferred to EM1 medium (MS salts/Gamborg B5 vitamins basal medium supplemented with 20 g/l sucrose, 5,000 mg/l DJ nutrients, 10 mg/l AgNO(3) and a hormone combination of 1.0 mg/l IAA, 3.0 mg/l BA and 2.0 mg/l gibberellic acid, solidified with 0.7% agar, pH 5.8) with 50 mg/l kanamycin and 500 mg/l carbenicillin for the elongation of buds. After 3-6 weeks, 1- to 2-cm-long elongated shoots are excised and planted on RM1 medium (MS basal medium supplemented with a hormone combination of 0.2 mg/l NAA and 0.1 mg/l IAA, solidified with 0.8% agar, pH 5.8) with 25 mg/l km and 200 mg/l carb for rooting. We tested four genotypes of pepper, and all presented a high differentiation efficiency (81.3% on average), elongation rate (61.5%) and rooting efficiency (89.5%). Polymerase chain reaction analysis results showed that 40.8% of the regenerated plantlets were transgenic plants.  相似文献   

14.
 A procedure for producing transgenic Chinese cabbage plants by inoculating cotyledonary explants with Agrobacterium tumefaciens strain EHA101 carrying a binary vector pIG121Hm, which contains kanamycin-resistance and hygromycin-resistance genes and the GUS reporter gene, is described. Infection was most effective (highest infection frequency) when explants were infected with Agrobacterium for 15 min and co-cultivated for 3 days in co-cultivation medium at pH 5.2 supplemented with 10 mg/l acetosyringone. Transgenic plants of all three cultivars used were obtained with frequencies of 1.6–2.7% when the explants were regenerated in shoot regeneration medium solidified with 1.6% agar. A histochemical GUS assay and PCR and Southern blot analyses confirmed that transformation had occurred. Genetic analysis of T1 progeny showed that the transgenes were inherited in a Mendelian fashion. Received: 15 December 1998 / Revision received: 2 July 1999 · Accepted: 8 July 1999  相似文献   

15.
We have established a reproducible procedure for transformation of shoot apices and regeneration of transgenic plants for two indica rice cultivars, white ponni (WP) and Pusa Basmathi 1 (PB 1). Four-day-old shoot apex explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA 101 harbouring a binary plasmid pRIT1. The vector contained an improved hygromycin phosphotransferase (hpt) gene for hygromycin resistance driven by actin 1 promoter and the reporter gene beta-glucuronidase intron (INT-GUS) controlled by CaMV 35S promoter. Rice shoots were induced on media containing 0.1 mg/l napthalene acetic acid (NAA), 1.0 mg/l kinetin (kn), 1.0 mg/l N(6)-benzyleaminopurin (BAP), 300 mg/l casaminoacid, 500 mg/l proline, 50 mg/l hygromycin and 500 mg/l cefotaxime. Transgenic plants were raised in pots and seeds were collected. Histochemical and polymerase chain reaction (PCR) analyses of field established transgenic rice plants and their offsprings confirmed the presence of GUS gene. Integration of T-DNA into the genome of putative transgenics was further confirmed by southern analysis. The transformation efficiency of WP was found to be ranging from 5.6 to 6.2% whereas in the case of PB1, it was from 7 to 8%. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both hpt and GUS gene.  相似文献   

16.
An efficient transformation protocol was developed for Eucalyptus tereticornis Sm. using cotyledon and hypocotyl explants. Precultured cotyledon and hypocotyl explants were cocultured with Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pBI121 containing the uidA and neomycin phosphotransferase II genes for 2 d and transferred to selective regeneration medium containing 0.5 mg/l 6-benzylaminopurine (BAP), 0.1 mg/l naphthalene acetic acid, 40 mg/l kanamycin, and 300 mg/l cefotaxime. After two passages in the selective regeneration medium, the putatively transformed regenerants were transferred to Murashige and Skoog (MS) liquid medium containing 0.5 mg/l BAP and 40 mg/l kanamycin on paper bridges for further development and elongation. The elongated kanamycin-resistant shoots were subsequently rooted on the MS medium supplemented with 1.0 mg/l indole-3-butyric acid and 40 mg/l kanamycin. A strong β-glucuronidase activity was detected in the transformed plants by histochemical assay. Integration of T-DNA into the nuclear genome of transgenic plants was confirmed by polymerase chain reaction and southern hybridization. This protocol allows effective transformation and direct regeneration of E. tereticornis Sm.  相似文献   

17.
A method for fast plant regeneration via organogenesis directly from Lycium barbarumleaf explants has been developed. The key factor for shoot regeneration was the presence of benzyladenine (BA) in the medium. NAA could only induce root formation and explant callusing. Murashige and Skoog (MS) medium supplemented with 2 mg/l BA and 0.5 mg/l NAA is the most efficient condition for shoot formation, with up to 92.6% shoot regeneration and no callus formation. All adventitious shoots cultured on MS medium supplemented with 1 mg/l IAA formed an extensive root system. Regenerated plants were morphologically normal and were also proved to be diploid (2n = 24). Using the optimized regeneration system, the genetic transformation of L. barbarumwas carried out mediated by Agrobacterium tumefaciensEHA101(pIG121Hm). 11.8% leaf explants produced kanamycin-resistant shoots after infection by A. tumefaciens.The putative transgenic nature of plants was confirmed by GUS assay and PCR analysis. Expression of the nptIIgene in the regenerated plants was also detected by observing the callus formation by leaf pieces on MS medium containing 0.2 mg/l 2,4-D and 0–100 mg/l kanamycin.  相似文献   

18.
Vigna mungo is one of the large-seeded grain legumes that has not yet been transformed. We report here for the first time the production of morphologically normal and fertile transgenic plants from cotyledonary-node explants inoculated with Agrobacterium tumefaciens carrying binary vector pCAMBIA2301, the latter of which contains a neomycin phosphotransferase ( nptII) gene and a beta-glucuronidase (GUS) gene ( uidA) interrupted with an intron. The transformed green shoots, selected and rooted on medium containing kanamycin, tested positive for nptII and uidA genes by polymerase chain reaction (PCR) analysis. These shoots were established in soil and grown to maturity to collect the seeds. Mechanical wounding of the explants prior to inoculation with Agrobacterium, time lag in regeneration due to removal of the cotyledons from explants and a second round of selection at the rooting stage were found to be critical for transformation. Analysis of T(0) plants showed the expression and integration of uidA into the plant genome. GUS activity in leaves, roots, flowers, anthers and pollen grains was detected by histochemical assay. PCR analysis of T(1) progeny revealed a Mendelian transgene inheritance pattern. The transformation frequency was 1%, and 6-8 weeks were required for the generation of transgenics.  相似文献   

19.
A protocol for rapid multiplication of Adhatoda vasica has been developed through nodal explants from field grown mature plants. The maximum number of shoots, i.e., 7.75 +/- 0.392 differentiated from split nodal halves on MS medium supplemented with BA (10.0 mg/l) during 4 weeks of culture. Maximum number of shoots formed per explant increased to ca. 30 within 6 weeks of subculture on medium containing BA (1.0 mg/l) and Kn (1.0 mg/l). The isolated shoots rooted 90% in MS medium containing IBA (0.1 mg/l) in 2 weeks. The rooted plantlets were successfully transferred to soil in glasshouse and subsequently in field. The plantlets rooted in liquid medium did not survive, but those rooted on solid medium showed more than 75% survival. In vitro raised plants grew successfully ex vitro till flowering.  相似文献   

20.
Protocols have been developed for the in vitro regeneration and Agrobacterium -mediated genetic transformation of meadow rue, Thalictrum flavum ssp. glaucum . Ten-day-old seedlings were bisected along the embryonic axis and the cotyledons were co-cultured with various Agrobacterium tumefaciens strains for 3 days. The cotyledons were cultured on a shoot induction medium (B5 salts and vitamins, 30 g l−1 sucrose, 2 mg l−1 kinetin, and 3 g l−1 Gelrite) containing 25 mg l−1 hygromycin B as the selection agent and 250 mg l−1 timentin to facilitate the elimination of Agrobacterium . Only the oncogenic A. tumefaciens strains A281 and C58 produced transgenic T. flavum callus tissues. A281 was the most effective strain producing hygromycin-resistant callus on 85% of the explants. Transgenic callus was subcultured on the shoot induction medium every 2 weeks. After 12 weeks, hygromycin-resistant shoots that formed on explants exposed to strain A281 were transferred to a root induction medium (B5 salts and vitamins, 25 mg l−1 hygromycin B, 250 mg l−1 timentin, and 3 g l−1 Gelrite). Detection of the β -glucuronidase ( GUS ) gene using a polymerase chain reaction assay, the high levels of GUS mRNA and enzyme activity, and the cytohistochemical localization of GUS activity confirmed the genetic transformation of callus cultures and regenerated plants. The transformation process did not alter the normal content of berberine in transgenic roots or cell cultures; thus, the reported protocol is valuable to study the molecular and metabolic regulation of protoberberine alkaloid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号