首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The need for progress in satellite remote sensing of terrestrial ecosystems is intensifying under climate change. Further progress in Earth observations of photosynthetic activity and primary production from local to global scales is fundamental to the analysis of the current status and changes in the photosynthetic productivity of terrestrial ecosystems. In this paper, we review plant ecophysiological processes affecting optical properties of the forest canopy which can be measured with optical remote sensing by Earth-observation satellites. Spectral reflectance measured by optical remote sensing is utilized to estimate the temporal and spatial variations in the canopy structure and primary productivity. Optical information reflects the physical characteristics of the targeted vegetation; to use this information efficiently, mechanistic understanding of the basic consequences of plant ecophysiological and optical properties is essential over broad scales, from single leaf to canopy and landscape. In theory, canopy spectral reflectance is regulated by leaf optical properties (reflectance and transmittance spectra) and canopy structure (geometrical distributions of leaf area and angle). In a deciduous broadleaf forest, our measurements and modeling analysis of leaf-level characteristics showed that seasonal changes in chlorophyll content and mesophyll structure of deciduous tree species lead to a seasonal change in leaf optical properties. The canopy reflectance spectrum of the deciduous forest also changes with season. In particular, canopy reflectance in the green region showed a unique pattern in the early growing season: green reflectance increased rapidly after leaf emergence and decreased rapidly after canopy closure. Our model simulation showed that the seasonal change in the leaf optical properties and leaf area index caused this pattern. Based on this understanding we discuss how we can gain ecophysiological information from satellite images at the landscape level. Finally, we discuss the challenges and opportunities of ecophysiological remote sensing by satellites.

  相似文献   

2.
Seasonal changes in tropical forests are difficult to measure from the ground, especially in areas of high species diversity and low phenological synchrony. Satellite images, which integrate individual tree canopies and cover a large spatial extent, facilitate tests for stand-level canopy phenology. Variability in near-infrated radiance (TM bands 4 and 5) of several distinct vegetation types was used to detect seasonal changes in a series of three Landsat Thematic Mapper (TM) images from the wet season to the dry season in Marabá, Brazil (eastern Amazon basin). Despite different atmospheric and instrumental conditions among the images, spectral changes were distinguishable. A phenological process (leaf aging, leaf drop, water stress) was determined from the spectral changes for each vegetation type. Changes in the spectral properties suggest that during the dry season, upland terra firme forest increased the rate of leaf exchange and some riparian vegetation was deciduous. Terra firme forest that had been altered by penetration of fires from nearby pastures increased in leaf biomass over a 14-month period. This study shows that a time series of images can provide information on temporal changes in primary vegetation and guide field studies to investigate seasonal changes that may not be detectable from the ground.  相似文献   

3.
The spectral properties of the leaves of the herbaceous species Brassica oleracea L. var. botrytis L., Cerastum tomentosum L., Petunia hybrida Vilm., and Talinum paniculatum (Jacq.) Gaertn. were examined to see what effect the epidermis had on leaf absorptance, reflectance and transmittance. Removal of the epidermis from the side of the leaf surface being illuminated resulted in increases in leaf absorptance and transmittance, and a decrease in reflectance in the 400–800 nm waveband. Removal of the epidermis from the opposite side of an illuminated leaf (effect was similar in both abaxial and adaxial surfaces) resulted in small decreases in both absorptance and reflectance, and corresponding increases in transmittance. Removal of both the upper and lower epidermis resulted in a marked increase in transmittance, while both leaf reflectance and absorptance were decreased. The results suggest that the presence of the epidermis significantly increases leaf absorptance in the photosynthetic wavebands.  相似文献   

4.
冠层光谱反射率直接关系到毛竹(Phyllostachys pubescens Mazel)林冠层参数的反演,对毛竹林地土壤肥力间接估测具有重要意义。以PROSPECT5、PROSAIL模型为基础,从叶片尺度和冠层尺度分析模型参数对叶片和冠层反射率的影响,构建毛竹冠层叶面积指数(LAI)-冠层反射率查找表并通过代价函数选取最优冠层反射率,从而实现毛竹林分冠层反射率的准确模拟。结果表明,在叶片尺度,PROSPECT模型参数敏感性从高到低依次为叶肉结构参数(N) > 叶绿素含量(Cab) > 等效水厚度(EWT) > 干物质含量(Cm) > 类胡萝卜素含量(Car);在冠层尺度,PROSAIL模型参数敏感性从高到低依次为LAI > Cab > EWT > Cm > N > Car > ALA(平均叶倾角);叶片尺度反射率整体大于冠层尺度反射率;在400~900 nm波长范围内,PROSAIL模型模拟的冠层光谱反射率与实测光谱反射率拟合效果较好,相对误差为6.71%。  相似文献   

5.
研究了不同土壤水氮条件下水稻 (Oryzasativa) 冠层光谱反射特征和植株水分状况的量化关系。结果表明, 水稻冠层近红外光谱反射率随土壤含水量的降低而降低, 短波红外光谱反射率随土壤含水量的降低而升高。相同土壤水分条件下, 高氮水稻的冠层含水率高于低氮水稻的冠层含水率 ;同一水分条件下, 高氮处理的可见光区和短波红外波段光谱反射率低于低氮处理, 近红外波段光谱反射率高于低氮处理。发现拔节后比值植被指数 (R810 /R460 ) 与水稻叶片含水率和植株含水率呈极显著的线性相关, 模型的检验误差 (RootmeansquareError, RMSE) 分别为 0.93和 1.5 0。表明比值植被指数R810 /R460 可以较好地监测不同生育期水稻叶片和植株含水率。  相似文献   

6.
Using optical and photosynthetic assays from a canopy access crane, we examined the photosynthetic performance of tropical dry forest canopies during the dry season in Parque Metropolitano, Panama City, Panama. Photosynthetic gas exchange, chlorophyll fluorescence, and three indices derived from spectral reflectance (the normalized difference vegetation index, the simple ratio, and the photochemical reflectance index) were used as indicators of structural and physiological components of photosynthetic activity. Considerable interspecific variation was evident in structural and physiological behavior in this forest stand, which included varying degrees of foliage loss, altered leaf orientation, stomatal closure, and photosystem II downregulation. The normalized difference vegetation index and the simple ratio were closely related to canopy structure and absorbed radiation for most species, but failed to capture the widely divergent photosynthetic behavior among evergreen species exhibiting various degrees of downregulation. The photochemical reflectance index and chlorophyll fluorescence were related indicators of photosynthetic downregulation, which was not detectable with the normalized difference vegetation index or simple ratio. These results suggest that remote sensing methods that ignore downregulation cannot capture within‐stand variability in actual carbon flux for this diverse forest type. Instead, these findings support a sampling approach that derives photosynthetic fluxes from a consideration of both canopy light absorption (e.g., normalized difference vegetation index) and photosynthetic light‐use efficiency (e.g., photochemical reflectance index). Such sampling should improve our understanding of controls on photosynthetic carbon uptake in diverse tropical forest stands.  相似文献   

7.
Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r1 > 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases.  相似文献   

8.
Leaf optical parameters influence light availability at the cellular, leaf, and canopy scale of integration. While recent studies have focused on leaf optical responses to acute plant stress, the effects of changes in plant resources on leaf optics remain poorly characterized. We examined leaf optical and anatomical responses of five temperate deciduous tree species to moderate changes in nutrient and light availability. Spectral reflectance in the visible waveband generally increased at high light, but decreased with increased nutrient availability. Patterns of both spectral reflectance and absorptance were primarily determined by chlorophyll concentration although carotenoid concentration was also influential. While most anatomical features did not explain residual variation in reflectance, cuticle thickness was significantly related to reflectance at complementary angles compared to the angle of incidence. Absorptance did not change with light environment; however, absorption efficiency per unit biomass increased by approximately 40% under low light, due to reduced leaf mass per area. We conclude that changes in resource availability differentially influence leaf optical properties and that such changes are driven primarily by changes in pigment concentrations. The magnitude of leaf optical responses to moderate changes in resource availability was comparable to those of acute stress responses and varied among species.  相似文献   

9.
This data paper reports spectral reflectance and transmittance data of leaves from 21 terrestrial vascular plant species (seven herbaceous, and 14 broadleaf and long-needle coniferous tree species) and of shoots from one short-needle coniferous tree species. The reflectance spectra of branches of one tree species, of the trunks of 12 tree species and ground surface of one deciduous broad-leaf forest are also reported. Optical measurements and leaf samplings were made at five sites on Honshu Island, Japan, which are typical vegetation types in East Asia, i.e., grassland, paddy field, and deciduous broad-leaf or coniferous forests. The collection and measurements were conducted for main species in each site. To include other common vegetation types in East Asia, such as evergreen broad-leaf or coniferous forests, the sample collection and the measurements were conducted at gardens and an experimental forest. Leaves of ten deciduous species were measured at different phenological stages from leaf expansion to senescence since those species shows significant seasonal changes in spectral reflectance and transmittance of leaves. Leaves at different position in a canopy (e.g., sunlit versus shaded leaves) were also measured for eight of 21 species. The spectral reflectance and transmittance from both adaxial and abaxial sides of the all leaves or needles, expect Picea abies needles. The measurements of the leaves were conducted with a spectroradiometer attached via an optical fiber to an integrating sphere. Two types of integrating spheres were used: a model LI-1800-12 (Li-Cor) and an RTS-3ZC integrating sphere (Analytical Spectral Devices). A leaf clip accessory was also used instead of an integrating sphere for measuring the leaves of two species. All data were measured within the 350–2,500-nm spectral range with 1-nm steps between measurements but the data obtained by LI-1800 is unavailable in 1,650–1,740, 1,890–1,950, and 2,050–2,500 nm because of a large amount of noise. These data are used as input parameters in a radiative transfer model designed to estimate the leaf area index from radiation reflected from a canopy surface.  相似文献   

10.
Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance.  相似文献   

11.
Predicting tropical plant physiology from leaf and canopy spectroscopy   总被引:1,自引:0,他引:1  
Doughty CE  Asner GP  Martin RE 《Oecologia》2011,165(2):289-299
A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO2 saturated photosynthesis (A max), respiration (R), leaf transmittance and reflectance spectra (400–2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r 2  = 0.74, root mean square error (RMSE) = 2.9 μmol m−2 s−1)] followed by R (r 2  = 0.48), and A max (r 2  = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m−2 s−1) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.  相似文献   

12.
Leaf optical properties (400–1,100 nm) were compared for four species of rain forest trees with crowns in understory, mid-canopy, and canopy positions to test whether optical properties change with light environment. The species tested represent a spectrum of regeneration patterns ranging from shade tolerant to light demanding. Overall, leaf optical properties of the four species were similar. Differences in absorptance were small, but statistically significant among the species and positions along the canopy gradient. Species absorptance differences corresponded somewhat to shade tolerance; two of the shade species showed higher absorptance in lower light environments, while the sun species showed the reverse pattern. Specific leaf mass (leaf weight per unit area) and chlorophyll content per unit leaf weight also changed along the canopy gradient. Specific leaf mass was positively correlated and chlorophyll per unit leaf weight was negatively correlated with increasing light environment. Consequently, the efficiency of absorption, as represented by the absorptance per unit leaf weight, increased as light level decreased, largely due to changes in specific leaf mass. In contrast, efficiency of absorption per unit leaf chlorophyll was relatively constant with light environment for the two species measured for chlorophyll.  相似文献   

13.
冠层反射率在森林植被类型精确解译、森林碳同化关键参数如叶面积指数(LAI)、叶绿素等遥感反演等方面具有重要意义.本研究以亚热带毛竹林、雷竹林和常绿落叶阔叶混交林3种典型森林类型为研究对象,通过耦合PROSPECT5和4SAIL模型模拟其冠层反射率时间序列.首先,对PROSPECT5和4SAIL模型参数进行敏感性分析,探讨模型参数对冠层反射率的影响;其次,利用实测反射率对不敏感参数进行优化,并确定其参数值;最后,耦合PROSPECT5和4SAIL模型模拟3种亚热带森林冠层反射率,并与MODIS反射率进行对比.结果表明:LAI对第1、2、3、5、7波段最敏感,各波段的总敏感指数分别为0.80、0.83、0.94、0.66、0.47;叶绿素含量对第4波段最敏感,总敏感指数为0.59;叶片含水量对第6波段的敏感性最大,总敏感性指数为0.54;叶子结构参数、类胡萝卜素、热点参数、干物质含量和土壤干湿比等参数对各个波段都不敏感或敏感性较小.优化后的PROSPECT5和4SAIL模型模拟得到的冠层反射率能够真实反映3种典型森林的季节性变化规律,通过与MODIS反射率对比分析发现,模拟冠层反射率和MODIS反射率之间具有较高的决定系数,分别为0.86、0.90、0.93,均方根误差(RMSE)也较小,分别为0.09、0.07、0.05,且模拟反射率能在一定程度上解决MODIS反射率数据冬季易受雨雪、混合像元影响等问题.  相似文献   

14.
How Tough are Sclerophylls?   总被引:2,自引:0,他引:2  
Fracture toughness was estimated for a 'least tough' path inthe leaves of woody species from three sclerophyllous plantcommunities. Most of the species from Mediterranean, tropicalheath forest and lowland tropical rain forest habitats had verytough leaves, with toughness generally 600-1300 J m-2, whichis two to four times higher than soft-leaved tropical pioneertrees. The toughest leaf (2032 J m-2), Parishia insignis, camefrom the canopy of the lowland rain forest. Leaves from theshaded understorey of the rain forest did not appear any lesstough than those from the canopy.Copyright 1993, 1999 AcademicPress Leaf fracture toughness, sclerophylly, Mediterranean vegetation, tropical forest  相似文献   

15.
Visser  A. J.  Tosserams  M.  Groen  M. W.  Kalis  G.  Kwant  R.  Magendans  G. W. H.  Rozema  J. 《Plant Ecology》1997,128(1-2):209-222
Seedlings of Vicia faba L. (cv. Minica) were grown in a factorial experiment in a greenhouse. The purpose of the study was to determine whether CO2 enrichment and supplemental UV-B radiation affect leaf optical properties and whether the combined effects differ from single factor effects. Seedlings were grown at either 380 mol mol-1 or 750 mol mol-1 CO2 and at four levels of UV-B radiation. After 20 and 40 days of treatment, absorptance, transmittance and reflectance of photosynthetically active radiation (PAR) were measured on the youngest fully developed leaf. On the same leaf, the specific leaf area on a fresh weight basis (SLAfw), chlorophyll content, UV-B absorbance, transmittance of UV light and stomatal index were measured. UV-B radiation significantly increased PAR absorptance and decreased PAR transmittance. The increased PAR absorptance can be explained by an increased chlorophyll content in response to UV-B radiation. Leaf transmittance of UV radiation decreased with increasing UV-B levels mainly caused by increased absorbance of UV absorbing compounds. UV-B radiation decreased both the stomatal density and epidermal cell density of the abaxial leaf surface, leaving the stomatal index unchanged. Effects of CO2 enrichment were less pronounced than those of UV-B radiation. The most important CO2 effect was an increase in stomatal density and epidermal cell density of the adaxial leaf surface. The stomatal index was not affected. No interaction between CO2 and UV-B radiation was found. The results are discussed in relation to the internal light environment of the leaf.  相似文献   

16.
The optical properties of the leaves of twelve tropical sun species and thirteen tropical extreme shade species were examined with an integrating sphere attached to a spectroradiometer. Measurements of diffuse reflectance and transmittance allowed calculations of absorptance, 350–1,100 nm. Although some shade species absorbed higher percentages of quantum flux densities for photosynthesis (400–700 nm, PPFD) than the mean for the sun species, the sun and shade species as groups were not significantly different from each other: 90.2, S.D. 3.6% for shade species and 88.6, S.D. 2.4% for the sun species. The groups of species did not differ in total absorptance of energy 350–1,100 nm. Furthermore, the sun and shade species were identical in their shift of absorptance at wavelengths between 650 and 750 nm. The anthocyanic coloration of the leaf undersurfaces of two species polymorphic for this characteristic (Trionela hirsuta and Ischnosciphon pruinosus) is correlated with increased absorptance at the upper end of the action spectrum of photosynthesis. Although sun and shade species have similar optical properties, the energy investment (as documented by dry wt per unit area of leaf surface) is much less for the shade species.  相似文献   

17.
干旱胁迫下雷竹叶片叶绿素的高光谱响应特征及含量估算   总被引:1,自引:0,他引:1  
张玮  王鑫梅  潘庆梅  谢锦忠  张劲松  孟平 《生态学报》2018,38(18):6677-6684
植物叶片的反射光谱特征与叶绿素含量密切相关。以重要的笋用竹种雷竹(Phyllostachys violascens)为研究对象,采用盆栽及控水试验方法研究了2年生雷竹在干旱胁迫条件下冠层叶片反射光谱的响应特征,分析了叶片叶绿素含量与不同波段光谱反射率一阶微分值以及光谱特征参数之间的相关关系,并以雷竹叶绿素含量敏感波段及构建的植被指数与叶绿素含量进行了拟合。结果表明,重度缺水处理后雷竹叶片叶绿素含量显著降低,在可见光区叶片光谱反射率随叶绿素含量的降低而增加,以波长493、639、693、756 nm等处的光谱反射率一阶微分值与叶绿素含量的相关性较高。雷竹叶片叶绿素含量与光谱特征参数如绿峰反射率、红谷反射率、蓝边面积、绿峰面积之间的相关性较高。与已有的植被指数相比基于雷竹叶绿素含量敏感波段修正后的植被指数与叶绿素含量相关性优于原植被指数。基于反射率一阶微分值构建的多元回归方程以及修正的绿色归一化植被指数(m GNDVI)构建的回归方程拟合效果较好,为雷竹叶绿素含量的较优估算方程。研究结果可以为雷竹叶绿素含量的快速无损测定以及季节性干旱条件下雷竹林的科学经营及灾后评估提供依据。  相似文献   

18.
稻麦叶片氮积累量与冠层反射光谱的定量关系   总被引:7,自引:1,他引:7       下载免费PDF全文
作物氮素积累动态是评价作物群体长势及估测产量和品质的重要指标,对于作物氮素的实时监测和精确管理具有重要意义。该文以5个小麦(Triticum aestivum)品种和3个水稻(Oryza sativa)品种在不同施氮水平下的3年田间试验为基础,综合研究了稻麦叶片氮积累量与冠层反射光谱的定量关系。结果表明,不同试验中拔节后叶片氮积累量均随施氮水平呈上升趋势;稻麦冠层光谱反射率在不同施氮水平下存在明显差异,可见光区(460~710 nm)反射率一般随施氮水平的增加逐渐降低,近红外波段(760~1 220 nm)反射率却随施氮水平的增加逐渐升高;就单波段而言,810和870 nm处的冠层光谱反射率均与稻麦叶片氮积累量具有相对较高的相关性;在光谱参数中,比值植被指数(Ratio vegetation index, RVI)(870,660)和RVI(810,660)均与稻麦叶片氮积累量具有高度的相关性,且相关系数明显高于单波段反射率,尤其是水稻作物;对于小麦和水稻,均可以利用统一的波段和光谱指数来监测其叶片氮积累量,并可以采用统一的回归方程来描述其叶片氮积累量随单波段反射率和反射光谱参数的变化模式,但若采用单独的回归系数则可以提高稻麦叶片氮积累量估测的准确性。  相似文献   

19.
A number of studies have linked responses in leaf spectral reflectance, transmittance, or absorptance to physiological stress. A variety of stressors including dehydration, flooding, freezing, ozone, herbicides, competition, disease, insects, and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In all cases, the maximum difference in reflectance within the 400-850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelengths near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentration of model leaves (fiberglass filter pads) and by the natural variability in leaf chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.  相似文献   

20.
非结构性碳水化合物(Non-structural Carbohydrates, NSCs)是植物生长代谢过程中重要的能量来源。通过在华南热带次生林进行氮磷添加试验,探究不同林层植物叶片NSCs的季节变化及其对氮磷添加的响应,取样时间为2019年1月、4月、7月和10月。结果表明:1)植物叶片NSCs存在显著的种间差异,磷(P)添加对叶片淀粉和NSCs含量具有显著影响,且物种与磷添加的交互作用显著影响叶片淀粉含量。2)黑嘴蒲桃和紫玉盘叶片NSCs含量对氮(N)添加的响应较为敏感,而白车和竹节叶片NSCs含量对P添加的响应较为敏感,氮磷同时添加(+NP)对植物叶片NSCs的增效作用最好。3)植物叶片NSCs存在显著的季节性变化,且季节与林层间的交互作用对叶片可溶性糖和NSCs含量具有显著影响。4)不同林层植物对氮磷添加的响应不同,氮磷添加使林下层植物叶片可溶性糖含量增高,林冠层降低,在干季,N添加会使林下层植物叶片淀粉含量增高,林冠层降低。P添加的影响恰好与之相反。在湿季,氮磷添加使林下层和林冠层植物叶片的淀粉含量增加。5)林冠层植物叶片NSCs含量高于林下层,且林下层植物叶片NSCs含量...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号