首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roles of phosphatidylinositol 3-kinase (PI 3-kinase) during meiotic progression beyond the meiosis I (MI) stage in porcine oocytes were investigated. PI 3-kinase exists in cumulus cells and oocytes, and the PI 3-kinase inhibitor, LY294002, suppressed the activation of mitogen-activated protein (MAP) kinase in denuded oocytes during the beginning of the treatment. However, in denuded oocytes cultured with LY294002, the MAP kinase activity steadily increased, and at 48 h of cultivation MAP kinase activity, p34(cdc2) kinase activity, and proportion of oocytes that had reached the meiosis II (MII) stage were at a similar level to those of oocytes cultured without LY294002. In contrast, LY294002 almost completely inhibited the activation of MAP kinase, p34(cdc2) kinase activity, and meiotic progression to the MII stage in oocytes surrounded with cumulus cells throughout the treatment. Treating cumulus oocyte complexes (COCs) with LY294002 produced a significant decrease in the phosphorylation of connexin-43, a gap junctional protein, in cumulus cells compared with that in COCs cultured without LY294002. These results indicate that PI 3-kinase activity in cumulus cells contributes to the activation of MAP kinase and p34(cdc2) kinase, and to meiotic progression beyond the MI stage. Moreover, gap junctional communications between cumulus cells and oocytes may be closed by phosphorylation of connexin-43 through PI 3-kinase activation in cumulus cells, leading to the activation of MAP kinase in porcine oocytes.  相似文献   

2.
In this study, the effects of U0126 that inhibits the activity of mitogen-activated protein (MAP) kinase kinase (MEK), and LY294002, which is a phosphatidylinositol (PI) 3-kinase inhibitor, on meiotic progression beyond the metaphase I (MI) stage in porcine oocytes were examined. Cumulus-oocyte complexes (COCs) were cultured for 22 h with 50 microM LY294002 or 10 microM U0126 following cultivation for the initial 22 h. MAP kinase activity in oocytes cultured with LY294002 or U0126 was significantly lower than that in control oocytes cultured for up to 44 h. U0126 and LY294002 significantly decreased p34(cdc2) kinase activity and the proportion of oocytes reaching the MII stage compared to those in control oocytes. Oocytes denuded after COCs had been cultured for 22 h were cultured further for 22 h with U0126 or LY294002. In the denuded oocytes, U0126 suppressed MAP kinase activity, p34(cdc2) kinase activity, and meiotic progression to the MII stage; however, LY294002 did not significantly affect the activity of these kinases and meiotic progression. These results suggest that increasing MAP kinase activity in oocytes via the PI 3-kinase signaling pathway in cumulus cells is involved in the stimulation of maturation promoting factor, leading to meiotic progression beyond the MI to MII stage in porcine oocytes.  相似文献   

3.
Mammalian oocytes are surrounded by numerous layers of cumulus cells, and the loss of gap junctional communication in the outer layers of cumulus cells induces meiotic resumption in oocytes. In this study, we investigated the dynamic changes in the gap junctional protein connexin-43 in cumulus cells during the meiotic resumption of porcine oocytes. The amount of connexin-43 in all layers of cumulus cells recovered from cumulus-oocyte complexes was increased after 4-h cultivation. However, at 12-h cultivation, the positive signal for connexin-43 immunoreactivity was markedly reduced in the outer layers of cumulus cells. When these reductions of connexin-43 were blocked by protein kinase C (PKC) or phosphatidylinositol (PI) 3-kinase inhibitor, networks of filamentous bivalents (i.e., advanced chromosomal status) were undetectable in the germinal vesicle of the oocyte. After 28-h cultivation, when the majority of oocytes were reaching the metaphase I (MI) stage, the connexin-43 in the inner layers of cumulus cells was phosphorylated, regardless of mitogen-activated protein (MAP) kinase activation. These results suggest that the initiation of meiotic resumption, namely, the formation of networks of filamentous bivalents in germinal vesicle, is associated with the reduction of gap junctional protein connexin-43 in the outer layers of cumulus cells via the PKC and/or PI 3-kinase pathway. Moreover, the connexin-43 in the inner layers of cumulus cells is phosphorylated during meiotic progression beyond the MI stage, regardless of MAP kinase activation in cumulus cells surrounding the oocyte.  相似文献   

4.
We investigated the formation of LH receptor (LHR) in cumulus cells surrounding porcine oocytes and the role of LHR in meiotic maturation of oocytes. At least three splice variants of LHR mRNA were detected in cumulus cells, in addition to the full-length form. Low levels of three types of products were seen in cumulus cells from cumulus oocytes complexes (COCs), whereas the full-length form was significantly increased by 12-h cultivation with FSH. The addition of FSH also significantly increased the binding level of biotinylated hCG to COCs. The formation of LHR in FSH-stimulated cumulus cells was not affected by additional 0.5 mM phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), and the oocytes were synchronized to the germinal vesicle (GV) II stage by exposure to 0.5 mM IBMX and FSH for 20 h. The binding of LH to its receptor induced a further increase in cAMP level and progesterone production and acceleration of meiotic progression to the metaphase I stage. The oocytes cultured with LH for 24 h following cultivation with FSH and IBMX were used for in vitro fertilization. At 6 days after in vitro fertilization, blastocyst rate in oocytes matured under these conditions was significantly higher than that of oocytes cultured in the absence of LH. Treatment of oocytes with FSH and 0.5 mM IBMX to express LH receptor in cumulus cells while holding oocytes at the GV II stage is a very beneficial way to produce in vitro-matured oocytes, which have high developmental competence.  相似文献   

5.
《Theriogenology》1996,45(8):1479-1489
The objective of this study was to examine the effect of cumulus cell removal from cumulusoocyte complexes (COCs) on meiotic progression. In Experiments 1, 2 and 3, pig COCs were cultured for 16, 20 and 24 h, respectively. The cumulus cells were then removed, and the denuded oocytes were incubated in fresh medium for another 32 h in Experiment 1, for 28 h in Experiment 2 and for 24 h in Experiment 3. In Experiment 4, the denuded oocytes and COCs were co-cultured in a drop of fresh medium from 24 h of cultivation to the end of the culture period (48 h). Removal of the cumulus cells after 16 h of cultivation had no effect on the proportions of oocytes both undergoing germinal vesicle breakdown (GVBD) and reaching MII. When the denuded oocytes were further cultured for 24 h, following the removal of their cumulus cells after 24 h of cultivation, the proportion of oocytes undergoing GVBD was significantly higher (90%, P < 0.05) than that of oocytes that were continuously cultured for 48 h without removing the cumulus cells (80%). Removal of the cumulus cells after 20 and 24 h of incubation produced a significant increase in the proportion of oocytes reaching the MII stage (84%, P < 0.05 and 76%, P < 0.01, respectively) as compared with COCs cultured continuously for 48 h without removing cumulus cells (71% and 55%, respectively). The maturation rate of denuded oocytes co-cultured with COCs for the second 24 h of cultivation was comparable to that of denuded oocytes cultured without COCs (77 and 74%, respectively). From these results, it was concluded that cumulus cells surrounding oocytes suppressed meiosis of both the GVBD process and progression from GVBD to MII in pig oocytes cultured in vitro, and that the suppressive factor in meiotic progression produced by the cumulus cells might be transferred to the oocytes through gap junctions rather than through the medium.  相似文献   

6.
Phosphatidylinositol 3-kinase (PI3K) is known to play critical roles in signal transduction processes related to a variety of cellular activities. In the present study, we investigated the role of PI3K during meiotic maturation in mouse oocytes using a specific inhibitor, LY294002. In follicle-stimulating hormone (FSH)-induced reversal of hypoxanthine-mediated meiotic arrest of cumulus oocyte complexes (COCs), LY294002 suppressed germinal vesicle breakdown (GVBD), first polar body (PB1) emission, and cumulus expansion. To examine the effect of LY294002, denuded oocytes (DOs) were cultured in medium containing follicular fluid meiosis-activating sterol (FF-MAS) since absence of gonadotropin receptors in oocytes has been reported and FSH did not stimulate meiotic maturation of DOs in the presence of hypoxanthine. In FF-MAS-induced maturation of DOs, LY294002 suppressed PB1emission, but not GVBD. In spontaneous gonadotropin-independent oocyte maturation, LY294002 had no effect on COCs and DOs. Akt/protein kinase B, a serine-threonine kinase, is a key downstream effector of the PI3K pathway. Therefore, we also examined the distribution of Akt during FSH-induced meiotic maturation. The distribution of Ser(473) phosphorylated Akt was similar to the localization of microtubules, while Thr(308) phosphorylated Akt was present in the pericentriolar materials (PCM) in metaphase I (MI) and II (MII) oocytes. LY294002 decreased the amount of Thr(308) phosphorylated Akt to very low to undetectable levels in MI and MII oocytes. Ser(473) phosphorylated Akt showed aberrant distribution and very low to undetectable levels of expression in LY294002-treated MI and MII oocytes, respectively. These results suggest that PI3K and Akt participate in mouse meiotic maturation.  相似文献   

7.
Four hypotheses were tested using isolated bovine oocytes. (1) Cumulus oocyte complexes (COCs) or denuded oocytes (DOs) were cultured with the protein kinase A (PKA) inhibitor, H-89, to test if meiotic arrest induced by forskolin or IBMX was due to cAMP-stimulated PKA activity or nonspecific effects of these cAMP elevators. (2) COCs were cultured with a protein kinase C (PKC) stimulator (PDDβ) or inhibitor (GF109203x) to test if PKC modulation altered oocyte maturation. (3) COCs were prestimulated for 15 min with (a) PDDβ followed by cotreatment with forskolin, or (b) with H-89 or H-7 followed by cotreatment with GF109203x, to test for interaction between the PKA and PKC signal transduction pathways. (4) H-89 was added to spontaneously maturing COCs at intervals 0–18 hr to test if H-89 interfered with the transition between meiosis I and II. The results were as follows: H-89 interfered with forskolin or IBMX arrested oocytes in a dose-response manner (IBMX ED50 = 41 μM for COCs; forskolin ED50 = 9 μM for denuded oocytes). Prestimulation with PKC induced meiotic resumption in COCs in spite of the presence of forskolin [PDDβ followed by PDDβ + forskolin: 41–47% germinal vesicle (GV) oocytes; forskolin alone: 90–95% GV], while PKC inhibition induced meiotic arrest to a similar extent as forskolin (GF109230x, 85% GV; forskolin, 67–80% GV). Additionally, pretreatment of COCs with H-89 interfered with GF109203x induced arrest (41% vs. 90% GV, respectively). Finally, H-89 interfered with the timely progression of COCs from meiosis I and II. These results indicate that the PKA and PKC pathways can modulate the maturation of bovine oocytes in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Activation of p38 MAPK during porcine oocyte maturation   总被引:1,自引:0,他引:1  
  相似文献   

9.
The meiosis of mammalian oocytes begins during the fetal life and stops at the dictyate stage. This study has assessed the role of specific phosphodiesterase (PDE) inhibitors on the control of meiotic resumption in porcine oocytes investigating the influence of PMSG-hCG and cAMP stimulation. Cumulus-oocytes complexes (COCs) and denuded oocytes (DOs) were collected from gilt ovaries obtained at a local slaughterhouse. Oocytes were cultured in NCSU23 with different PDE inhibitors. The EC(50) for oocytes maintained in germinal vesicle (GV) stage was evaluated using different doses of both cilostamide (CIL), PDE3 inhibitor and 3-isobutyl-1-methylxanthine (IBMX), a nonspecific PDE inhibitor. In presence of PMSG-hCG, meiotic resumption is observed after 24 hr of culture. Both CIL and IBMX reversibly blocked meiotic resumption. In absence of PMSG-hCG, meiotic resumption is reduced after 24 hr of culture. After 48 hr of culture, only CIL significantly blocked meiotic resumption. Still in absence of PMSG-hCG, significant effect of treatment was only observed in COCs using the combination of CIL and rolipram (PDE3 and PDE4 inhibitor, respectively) compared to the use of IBMX. To assess the contribution of cAMP synthesis, a low dose of an adenylyl cyclase (AC) stimulator, forskolin, has been used in combination with CIL showing a significant effect of this combination. In CIL-treated COCs and DOs, significant higher percentages of oocytes were maintained in GV stage when cultured in combination with forskolin instead of PMSG-hCG. In conclusion, these results demonstrate that the control of meiotic resumption in porcine oocytes is highly regulated by cAMP. Both the degradation by specific PDE3 enzyme and the synthesis by an active AC are highly involved.  相似文献   

10.
The effects of the putative maturation inhibitor in porcine follicular fluid on gonadotropinstimulated reversal of cyclic adenosine monophosphate (cAMP)-maintained meiotic arrest in mouse oocytes in vitro were assessed in this study. When cumulus cell-enclosed oocytes were cultured in a suboptimal inhibitory concentration of dibutyryl cAMP (dbcAMP), the effect of follicle-stimulating hormone (FSH) on oocyte maturation was initially inhibitory at 3 hr, but stimulatory at 6 hr. Supplementation of the medium with an ultrafiltrate of porcine follicuiar fluid (PM10-filtrate) completely suppressed FSH-promoted reversal of inhibition at 6 hr. Charcoal extraction eliminated this effect of the PM10-filtrate. FSH reversed the inhibition of maturation of cumulus cell-enclosed oocytes maintained by a high concentration of dbcAMP and suboptimal concentrations of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine (IBMX), during a 21–22-hr culture period. However, the effect of a completely inhibitory concentration of IBMX was not reversed by gonadotropin. A component of serum was also found to inhibit FSH reversal of dbcAMP-maintained meiotic arrest, and this activity was removed by charcoal extraction. In addition, when oocytes were cultured in medium containing a suboptimal concentration of dbcAMP plus a low molecular weight fraction (< 1,000) of porcine follicular fluid, porcine serum, or fetal bovine serum, a synergistic inhibition of maturation was observed. Experiments with highly purified gonadotropins revealed that reversal of dbcAMP-maintained meiotic arrest occurred only in response to FSH; neither highly purified luteinizing hormone nor human chorionic gonadotropin could mimic this action of FSH. Also, this effect was mediated by the cumulus cells, since FSH could not reverse dbcAMP-maintained meiotic arrest in denuded oocytes. Furthermore, elevating cAMP levels in denuded oocytes augmented, rather than reversed, the inhibitory action of dbcAMP on oocyte maturation. These data therefore suggest that dbcAMP- or IBMX-maintained meiotic arrest in vitro is reversed by an FSH-stimulated, cAMP-dependent process mediated by the cumulus cells and demonstrate that a factor present both in follicular fluid and serum prevents this action of the gonadotropin.  相似文献   

11.
Park MR  Gupta MK  Lee HR  Das ZC  Uhm SJ  Lee HT 《Theriogenology》2011,75(5):940-950
Phosphatidylinositol-3-kinases (PI3Ks) play pivotal roles in meiotic progression of oocytes from metaphase I to metaphase II stage. Using a Class III-specific inhibitor of PI3K, 3-methyladenine (3MA), this study shows that Class III PI3K may be essential for meiotic progression of porcine oocytes beyond germinal vesicle (GV) stage. Treatment of immature porcine oocytes with 3MA for 22-42 h arrested them at the GV stage, irrespective of the presence or absence of cumulus cells. Furthermore, a significantly high proportion (60.9 ± 13.8%) of 3MA-treated oocytes acquired a nucleolus completely surrounded by a rim of highly condensed chromatin (GV-II stage). The GV-arresting effect of 3MA was, however, completely reversible upon their further culture in the absence of 3MA for 22 h. When cumulus-oophorus-complexes (COCs), arrested at the GV stage for 22 h by 3MA, were further cultured for 22 h in the absence of 3MA, 96.1 ± 1.5% of oocytes reached the MII stage at 42 h of IVM and did not differ from non-treated control oocytes with respect to their ability to fertilize, cleave and form blastocyst (P > 0.05) upon in vitro fertilization (IVF) or parthenogenetic activation (PA). These data suggest that 3MA efficiently blocks and synchronizes the meiotic progression of porcine oocytes at the GV stage without affecting their ooplasmic maturation in terms of post-fertilization/activation in vitro embryonic development. Our data also provide indirect evidence for the likely participation of Class III PI3K in meiotic maturation of porcine oocyte beyond the GV stage.  相似文献   

12.
Calcium (Ca(2+))/calmodulin-dependent protein kinase kinase (CaMKK) is a novel member of Ca(2+)/calmodulin-dependent protein kinase (CaMK) family, whose physiological roles in regulating meiotic cell cycle needs to be determined. We showed by Western blot that CaMKK was expressed in pig oocytes at various maturation stages. Confocal microscopy was employed to observe CaMKK distribution. In oocytes at the germinal vesicle (GV) or prometaphase I (pro-MI) stage, CaMKK was distributed in the nucleus, around the condensed chromatin and the cortex of the cell. At metaphase I (MI) stage, CaMKK was concentrated in the cortex of the cell. After transition to anaphase I or telophase I stage, CaMKK was detected around the separating chromosomes and in the cortex of the cell. At metaphase II (MII) stage, CaMKK was localized to the cortex of the cell, with a thicker area near the first polar body (PB1). Treatment of pig cumulus-enclosed oocytes with STO-609, a membrane-permeable CaMKK inhibitor, resulted in the delay/inhibition of the meiotic resumption and the inhibition of first polar body emission. The correlation between CaMKK and microfilaments during meiotic maturation of pig oocytes was then studied. CaMKK and microfilaments were colocalized from MI to MII during porcine oocyte maturation. After oocytes were treated with STO-609, microfilaments were depolymerized, while in oocytes exposed to cytochalasin B (CB), a microfilament polymerization inhibitor, CaMKK became diffused evenly throughout the cell. These data suggest that CaMKK is involved in regulating the meiotic cell cycle probably by interacting with microfilaments in pig oocytes.  相似文献   

13.
Bovine cumulus-oocyte complexes (COCs) and mural granulosa cells express the mRNA coding for the micro-opioid receptor. The addition of beta-endorphin (beta-end) to oocytes cultured in hormonally-supplemented in vitro maturation (IVM) medium had no effect on the rates of oocytes reaching the metaphase II (MII) stage, but significantly decreased the maturation rate (P < 0.05) and arrested oocytes at metaphase I (MI) after culture in hormone-free medium (P < 0.001). Naloxone (Nx) reverted this inhibitory effect of beta-end. Moreover, Nx "per se" showed a dose-dependent dual effect. When added at high concentration (10 x (-3) M), it significantly reduced the rate of oocytes in MII (P < 0.001), thus increasing the rate of oocytes arrested in MI. However, Nx added at low concentration (10 x (-8) M) significantly increased oocyte maturation (P < 0.001). High concentration of Nx induced an increase in both intracellular calcium concentration ([Ca(2+)](i)) and in the activity of the mitogen-activated protein kinase (MAPK) also called extracellular-regulated kinase (ERK) in cumulus cells of bovine COCs. Blocking the rise in [Ca(2+)](i) with the calcium chelator acetoxymethylester-derived form of bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) reversed the Nx-dependent inhibition of meiotic maturation observed at high Nx concentrations. Whereas blocking ERK with the MAPK/ERK kinase (MEK) inhibitor, PD98059, had no effect on this process. Therefore, we concluded that the mocro-opioid receptor, by inducing [Ca(2+)](i) increase, participates in the cumulus-oocyte coupled signaling associated with oocyte maturation.  相似文献   

14.
Oocytes from LTXBO mice exhibit a delayed entry into anaphase I and frequently enter interphase after the first meiotic division. This unique oocyte model was used to test the hypothesis that protein kinase C (PKC) may regulate the meiosis I-to-meiosis II transition. PKC activity was detected in LTXBO oocytes at prophase I and increased with meiotic maturation, with the highest (P < 0.05) activity observed at late metaphase I (MI). Treatment of late MI-stage oocytes with the PKC inhibitor, bisindolylmaleimide I (BIM), transiently reduced (P < 0.05) M-phase-promoting factor (MPF) activity and promoted (P < 0.05) progression to metaphase II (MII), while mitogen-activated protein kinase (MAPK) activity remained elevated during the MI-to-MII transition. Confocal microscopy analysis of LTXBO oocytes during this transition showed PKC-delta associated with the meiotic spindle and then with the chromosomes at MII. Inhibition of PKC activity also prevented untimely entry into interphase, but only when PKC activity was reduced in oocytes before the progression to MII and thus indicates that the transition into interphase is directly associated with the delayed triggering of anaphase I. Moreover, the defect(s) that initiate activation occur upstream of MAPK, as suppression of PKC activity failed to prevent activation by Mos(tm1Ev)/ Mos(tm1Ev) LTXBO oocytes expressing no detectable MAPK activity. In summary, PKC participates in the regulatory mechanisms that delay entry into anaphase I in LTXBO oocytes, and the disruption promotes untimely entry into interphase. Thus, loss of regulatory control over PKC activity during oocyte maturation disrupts the critical MI-to-MII transition, leading to a precocious exit from meiosis.  相似文献   

15.
In the growing follicle, communication between the oocyte and its surrounding follicular cells is essential for normal oocyte and follicular development. Maturation of the fully grown oocyte in vivo is associated with the loss of cumulus cell-oocyte gap junctional communication, preventing entry of meiotic-modulating factors such as cAMP into the oocyte. We have previously shown that oocyte and cumulus cell cAMP levels can be independently regulated using inhibitors of cell-specific phosphodiesterase (PDE) isoenzymes. The objectives of this study were to examine the effects of cell type-specific PDE inhibitors on the maintenance of cumulus cell-oocyte gap junction communication (GJC) and oocyte meiotic progression. Cumulus-oocyte complexes (COCs) were aspirated from antral follicles of abattoir-derived ovaries. Cumulus cell-oocyte GJC during oocyte maturation was quantified using the fluorescent dye, calcein-AM. COCs were cultured in the presence of specific PDE inhibitors, milrinone (an oocyte PDE3 inhibitor) or rolipram (a cumulus cell PDE4 inhibitor), and were pulsed with calcein-AM to allow dye transfer between the two cell types. Following cumulus cell removal, fluorescence in denuded oocytes was measured by microphotometry, and meiotic progression was assessed. In control COCs, dye transfer from cumulus cells to the oocyte fell progressively from 0 to 9 h, after which oocyte-cumulus cell GJC was completely lost. Loss of GJC was significantly attenuated (P < 0.05) during this time in response to treatment with milrinone and rolipram. Forskolin maintained GJC at the initial 0 h level until 3-4 h of culture, whereas treatment with milrinone and forskolin together actually increased the level of dye transfer above that in COCs treated with forskolin alone. Importantly, all treatments that prolonged GJC also delayed meiotic resumption, with meiosis generally resuming when fluorescence had fallen to approximately 40% of initial levels. These results, together with our previous studies, demonstrate that treatments that maintain or elevate cAMP levels in cumulus cells, oocytes, or both result in prolonged oocyte-cumulus cell communication and delayed meiotic resumption.  相似文献   

16.
The 5'AMP-activated protein kinase (AMPK) activation is involved in the meiotic maturation of oocytes in the ovaries of mice and pigs. However, its effects on the oocyte appear to be species-specific. We investigated the patterns of AMPK and mitogen-activated protein kinases (MAPK3/1) phosphorylation during bovine in vitro maturation (IVM) and the effects of metformin, an AMPK activator, on oocyte maturation in cumulus-oocyte complexes (COCs) and denuded bovine oocytes (DOs). In bovine COCs, PRKAA Thr172 phosphorylation decreased, whereas MAPK3/1 phosphorylation increased in both oocytes and cumulus cells during IVM. Metformin (5 and 10 mM) arrested oocytes at the GV stage in COCs but not in DOs. In COCs, this arrest was associated with the inhibition of cumulus cell expansion, an increase in PRKAA Thr172 phosphorylation, and a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. However, the addition of compound C (10 muM), an inhibitor of AMPK, accelerated the initiation of the GV breakdown (GVBD) process without any alteration of MAPK3/1 phosphorylation in oocytes from bovine COCs. Metformin decreased AURKA and CCNB1 protein levels in oocytes. Moreover, after 1 h of IVM, metformin decreased RPS6 phosphorylation and increased EEF2 phosphorylation, suggesting that protein synthesis rates were lower in oocytes from metformin-treated COCs. Most oocytes were arrested after the GVBD stage following the treatment of COCs with the MEK inhibitor, U0126 (100 micromoles). Thus, in bovine COCs, metformin blocks meiotic progression at the GV stage, activates PRKAA, and inhibits MAPK3/1 phosphorylation in both the oocytes and cumulus cells during IVM. Moreover, cumulus cells were essential for the effects of metformin on bovine oocyte maturation, whereas MAPK3/1 phosphorylation was not.  相似文献   

17.
We investigated cAMP content, gap junctional communications (GJCs) status, and LH-receptor (LH-R) expression in porcine cumulus-oocyte complexes (COCs) during in vitro maturation treated with the phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) or with FSH. COCs were cultured for 20 hr (1st culture) in M199 containing 10% FBS (basic medium, BM group) or BM supplemented with FSH (FSH group) or IBMX (IBMX group). Each COC was then transferred into BM containing both FSH and LH and cultured for an additional 24 hr (2nd culture). The proportions of metaphase-II (M-II) oocytes at the end of the 2nd culture did not differ between the FSH (75.7%) and IBMX (68.2%) groups, whereas only 10.1% of oocytes in the BM group reached the M-II stage. During the 1st culture, the cAMP content of COCs and oocytes became significantly higher in the FSH and IBMX groups than in the BM group; the FSH group had a far greater increment than did the IBMX group. GJCs in the FSH and BM groups gradually closed with increasing duration of the 1st culture, whereas a significantly higher proportion of COCs in the IBMX group still had open GJCs than in the other two groups. Furthermore, LH-R mRNA expression significantly increased in both the FSH and IBMX groups compared with the BM group. These results suggest that inhibition of PDEs in porcine COCs make the oocyte ready for release from meiotic arrest, and that maintenance of a moderate cAMP content may prolong GJCs and stimulate LH-R expression.  相似文献   

18.
Germinal vesicle (GV) breakdown in mammalian oocytes is regulated by the activation of maturation promoting factor (MPF). We investigated a specific cdc2 kinase inhibitor, roscovitine, to maintain pig oocytes in the GV stage. Cumulus-oocyte complexes (COCs) were aspirated from slaughterhouse ovaries and cultured for 44 hr in NCSU#23 medium containing different levels of roscovitine (0, 10, 20, 30, 40, 50 microM in Experiment 1 and 0, 40, 60, 80, 100, 120 microM in Experiment 2). The COCs were cultured for another 44 hr after removal of the chemical. Twenty oocytes in each group were fixed at 44 hr for immunocytochemical labeling of the cytoskeleton and the rest (approximately 20/group) were fixed at the end of 88 hr after culture. Results showed that the inhibition of the oocyte in the GV stage was not effective when 10-50 microM (Experiment 1) of roscovitine were used (19-34%). When oocytes were released from the inhibitor, similar proportions (70-83%) of oocytes were observed in the MII or advanced stages among treatments. However, when higher concentrations of roscovitine were used (Experiment 2), significantly greater inhibitory effect was observed at the levels of 80-120 microM with 83-91% oocytes being blocked in the GV stage when compared to the control (9%) and the 40-60 microM (27-43%) groups (P < 0.05). Although 15-21% of the oocytes showed abnormal MII morphology with aberrant meiotic spindles and/or formation of cytoplasmic microtubules, a substantial number of oocytes resumed meiosis and reached MII stage at 44 hr after removal of this chemical. In Experiment 3, different concentrations of roscovitine (0, 20, 40, and 80 microM) were tested to examine the length of intervals (0, 11, 22, 33, and 44 hr) for an effective inhibition. Results showed that the inhibitory effect was significantly more prominent at 22 hr than that at 33 and 44 hr after roscovitine treatment in all treatment groups (P < 0.05). This study demonstrated that roscovitine-treated oocytes resumed meiosis after removal of the inhibitor. This could provide flexibility for studying porcine oocyte development and embryo cloning and may have application in other species.  相似文献   

19.
The objective of this study was to elucidate the role of a [Ca2+]i rise and protein kinase C (PKC) activation on decreases of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase activity during parthenogenetic activation of porcine oocytes. In oocytes treated with 50 microM Ca2+ ionophore, degradations of both p34(cdc2) kinase and MAP kinase activity were observed and half of these oocytes formed pronuclei. However, a supplement of PKC inhibitor, calphostin C, after 50 microM Ca2+ ionophore treatment, was sufficient to inhibit the inactivation of MAP kinase and pronuclear formation in the oocytes. These results showed that PKC played an important role in Ca2+-induced oocyte activation. On the other hand, 10 microM Ca2+ ionophore treatment could not affect the MAP kinase activity but induced a transient decrease of p34(cdc2) kinase activity, which resulted in recovery of p34(cdc2) kinase activity and progression to meiotic metaphase III stage. To investigate the effects of PKC activator on oocytes treated with 10 microM Ca2+ ionophore, matured oocytes were cultured with phorbol 12-myriatate 13-acetate (PMA), after 10 microM Ca2+ ionophore treatment. The additional treatment suppressed the recovery of p34(cdc2) kinase activity and rapidly induced a decrease of MAP kinase activity, and these low activities were maintained until 12-h cultivation. As a result, a significantly higher percentage of these oocytes (67%) had pronuclei at 12-h cultivation. Moreover, PMA treatment without Ca2+ ionophore treatment effectively led to a decrease of MAP kinase activity in a dose-dependent manner but not p34(cdc2) kinase activity in matured porcine oocytes. In conclusion, the parthenogenetic activation of porcine oocytes was mediated by the inactivation of p34(cdc2) kinase via a calcium-dependent pathway and thereafter by the inactivation of MAP kinase via a PKC-dependent pathway.  相似文献   

20.
Yang CR  Wei Y  Qi ST  Chen L  Zhang QH  Ma JY  Luo YB  Wang YP  Hou Y  Schatten H  Liu ZH  Sun QY 《PloS one》2012,7(6):e38807
The arrest of meiotic prophase in mammalian oocytes within fully grown follicles is dependent on cyclic adenosine monophosphate (cAMP) regulation. A large part of cAMP is produced by the Gs-linked G-protein-coupled receptor (GPR) pathway. In the present study, we examined whether GPR3 is involved in the maintenance of meiotic arrest in porcine oocytes. Expression and distribution of GPR3 were examined by western blot and immunofluorescence microscopy, respectively. The results showed that GPR3 was expressed at various stages during porcine oocyte maturation. At the germinal vesicle (GV) stage, GPR3 displayed a maximal expression level, and its expression remained stable from pro-metaphase I (MI) to metaphase II (MII). Immunofluorescence staining showed that GPR3 was mainly distributed at the nuclear envelope during the GV stage and localized to the plasma membrane at pro-MI, MI and MII stages. RNA interference (RNAi) was used to knock down the GPR3 expression within oocytes. Injection of small interfering double-stranded RNA (siRNA) targeting GPR3 stimulated meiotic resumption of oocytes. On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation. Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation. We propose that GPR3 is required for maintenance of meiotic arrest in porcine oocytes through pathways involved in the regulation of cAMP and cGMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号