首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
4.
5.
6.
In in vitro splicing reactions, influenza virus NS1 mRNA was not detectably spliced, but nonetheless very efficiently formed ATP-dependent 55S complexes containing the U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins (snRNPs) (C. H. Agris, M. E. Nemeroff, and R. M. Krug, Mol. Cell. Biol. 9:259-267, 1989). We demonstrate that the block in splicing was caused by two regions in NS1 mRNA: (i) a large intron region (not including the branchpoint sequence) and (ii) an 85-nucleotide 3' exon region near the 3' end of the exon. After removal of both of these regions, the 5' and 3' splice sites and branchpoint of NS1 mRNA functioned efficiently in splicing, indicating that they were not defective. The two inhibitory regions shared one property: splicing inhibition was independent of the identity of the nucleotide sequence in either region. In other respects, however, the two inhibitory regions differed. The inhibitory activity of the intron region was proportional to its length, indicating that the inhibition was probably due to size only. In contrast, the 3' exon, which was of small size, was a context element; i.e., it functioned only when it was located at a specific position in the 3' exon of NS1 mRNA. To determine how these intron and exon regions inhibited splicing, we compared the types of splicing complexes formed by intact NS1 mRNA with those formed by spliceable NS1 mRNA lacking the intron and exon regions. Splicing complexes were formed by using purified splicing factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
In contrast to influenza A and B viruses, which encode their matrix (M) proteins via an unspliced mRNA, the influenza C virus M protein appears to be coded for by a spliced mRNA from RNA segment 6. Although an open reading frame in RNA segment 6 of influenza C/JJ/50 virus could potentially code for a protein of 374 amino acids, a splicing event results in an mRNA coding for a 242-amino-acid M protein. The message for this protein represents the major M gene-specific mRNA species in C virus-infected cells. Despite the difference in coding strategies, there are sequence homologies among the M proteins of influenza A, B, and C viruses which confirm the evolutionary relationship of the three influenza virus types.  相似文献   

10.
11.
The 5' end of eukaryotic mRNAs are modified by the addition of a 7-methyl guanosine (m7G) cap. The role of the cap in translation has been well established. Additionally, studies conducted in vitro or in microinjected Xenopus oocytes have implicated the cap in RNA processing and transport. To determine the fate of uncapped mRNA in intact yeast cells, conditional alleles of the gene encoding the capping enzyme guanylyltransferase subunit (CEG1) were generated. RNA analysis of temperature-sensitive ceg1 strains revealed an accumulation of unspliced pre-mRNAs and a corresponding decrease in spliced mRNAs at the restrictive temperature. A substantial proportion of spliced mRNA was also uncapped. Therefore, the cap appears to stimulate, but is not absolutely required for, splicing in vivo. In addition, steady-state levels of several mRNAs were decreased, perhaps due to increased degradation of uncapped mRNAs. In contrast to splicing, mRNA polyadenylation and transport to the cytoplasm were unaffected.  相似文献   

12.
We used the yeast interaction trap system to identify a novel human 70-kDa protein, termed NS1-binding protein (NS1-BP), which interacts with the nonstructural NS1 protein of the influenza A virus. The genetic interaction was confirmed by the specific coprecipitation of the NS1 protein from solution by a glutathione S-transferase–NS1-BP fusion protein and glutathione-Sepharose. NS1-BP contains an N-terminal BTB/POZ domain and five kelch-like tandem repeat elements of ~50 amino acids. In noninfected cells, affinity-purified antibodies localized NS1-BP in nuclear regions enriched with the spliceosome assembly factor SC35, suggesting an association of NS1-BP with the cellular splicing apparatus. In influenza A virus-infected cells, NS1-BP relocalized throughout the nucleoplasm and appeared distinct from the SC35 domains, which suggests that NS1-BP function may be disturbed or altered. The addition of a truncated NS1-BP mutant protein to a HeLa cell nuclear extract efficiently inhibited pre-mRNA splicing but not spliceosome assembly. This result could be explained by a possible dominant-negative effect of the NS1-BP mutant protein and suggests a role of the wild-type NS1-BP in promoting pre-mRNA splicing. These data suggest that the inhibition of splicing by the NS1 protein may be mediated by binding to NS1-BP.  相似文献   

13.
We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.  相似文献   

14.
15.
The direct-repeat elements (dr1) of avian sarcoma virus (ASV) and leukosis virus have the properties of constitutive transport elements (CTEs), which facilitate cytoplasmic accumulation of unspliced RNA. It is thought that these elements represent binding sites for cellular factors. Previous studies have indicated that in the context of the avian sarcoma virus genome, precise deletion of both ASV dr1 elements results in a very low level of virus replication. This is characterized by a decreased cytoplasmic accumulation of unspliced RNA and a selective increase in spliced src mRNA. Deletion of either the upstream or downstream dr1 results in a delayed-replication phenotype. To determine if the same regions of the dr1 mediate inhibition of src splicing and unspliced RNA transport, point mutations in the upstream and downstream elements were studied. In the context of viral genomes with single dr1 elements, the effects of the mutations on virus replication and increases in src splicing closely paralleled the effects of the mutations on CTE activity. For mutants strongly affecting CTE activity and splicing, unspliced RNA but not spliced RNA turned over in the nucleus more rapidly than wild-type RNA. In the context of wild-type virus containing two dr1 elements, mutations of either element that strongly affect CTE activity caused a marked delay of virus replication and a selective increase in src splicing. However, the turnover of the mutant unspliced RNA as well as the spliced mRNA species did not differ significantly from that of the wild type. These results suggest the dr1 elements in ASV act to selectively inhibit src splicing and that both elements contribute to the fitness of the wild-type virus. However, a single dr1 element is sufficient to stabilize unspliced RNA.  相似文献   

16.
17.
18.
Fine-structure mapping of the capsid-specific mRNAs from adeno-associated virus (AAV) revealed an alternate splicing pattern in these RNAs. S1 nuclease and primer extension analyses showed that splicing of these mRNAs occurs at acceptor sites at nucleotide 2228 (major splice) or 2201 (minor splice). Both splice acceptors were ligated to the same 55-nucleotide leader in mature mRNAs. Both species were present in equal amounts in mRNA derived from AAV plasmid-transfected cells. However, when adenovirus infection accompanied the DNA transfection, the major splice predominated over the minor splice. Using cDNA clones of both the major and minor spliced mRNAs, we demonstrated that the largest AAV capsid protein, VP1, was derived from the minor spliced mRNA. The other capsid proteins, VP2 and VP3, came predominantly from the major spliced mRNA. These results, which describe the previously undetected minor splice, provide a mechanism for the production of all three AAV virion proteins.  相似文献   

19.
20.
The influenza A virus NS1 protein, a virus-encoded alpha/beta interferon (IFN-alpha/beta) antagonist, appears to be a key regulator of protein expression in infected cells. We now show that NS1 protein expression results in enhancement of reporter gene activity from transfected plasmids. This effect appears to be mediated at the translational level, and it is reminiscent of the activity of the adenoviral virus-associated I (VAI) RNA, a known inhibitor of the antiviral, IFN-induced, PKR protein. To study the effects of the NS1 protein on viral and cellular protein synthesis during influenza A virus infection, we used recombinant influenza viruses lacking the NS1 gene (delNS1) or expressing truncated NS1 proteins. Our results demonstrate that the NS1 protein is required for efficient viral protein synthesis in COS-7 cells. This activity maps to the amino-terminal domain of the NS1 protein, since cells infected with wild-type virus or with a mutant virus expressing a truncated NS1 protein-lacking approximately half of its carboxy-terminal end-showed similar kinetics of viral and cellular protein expression. Interestingly, no major differences in host cell protein synthesis shutoff or in viral protein expression were found among NS1 mutant viruses in Vero cells. Thus, another viral component(s) different from the NS1 protein is responsible for the inhibition of host protein synthesis during viral infection. In contrast to the earlier proposal suggesting that the NS1 protein regulates the levels of spliced M2 mRNA, no effects on M2 protein accumulation were seen in Vero cells infected with delNS1 virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号