首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the initial sequencing of the human genome, many projects are underway to understand the effects of genetic variation between individuals. Predicting and understanding the downstream effects of genetic variation using computational methods are becoming increasingly important for single nucleotide polymorphism (SNP) selection in genetics studies and understanding the molecular basis of disease. According to the NIH, there are now more than four million validated SNPs in the human genome. The volume of known genetic variations lends itself well to an informatics approach. Bioinformaticians have become very good at functional inference methods derived from functional and structural genomics. This review will present a broad overview of the tools and resources available to collect and understand functional variation from the perspective of structure, expression, evolution and phenotype. Additionally, public resources available for SNP identification and characterisation are summarised.  相似文献   

2.
As the largest set of sequence variants, single-nucleotide polymorphisms (SNPs) constitute powerful assets for mapping genes and mutations related to common diseases and for pharmacogenetic studies. A major goal in human genetics is to establish a high-density map of the genome containing several hundred thousand SNPs. Here we assayed 3.7 Mb (154,397 bp in 24 alleles) of chromosome 14 expressed sequence tags (ESTs) and sequence-tagged sites, for sequence variation in DNA samples from 12 African individuals. We identified and mapped 480 biallelic markers (459 SNPs and 21 small insertions and deletions), equally distributed between EST and non-EST classes. Extensive research in public databases also yielded 604 chromosome 14 SNPs (dbSNPs), 520 of which could be mapped and 19 of which are common between CNG (i.e., identified at the Centre National de Génotypage) and dbSNP polymorphisms. We present a dense map of SNP variation of human chromosome 14 based on 981 nonredundant biallelic markers present among 1345 radiation hybrid mapped sequence objects. Next, bioinformatic tools allowed 945 significant sequence alignments to chromosome 14 contigs, giving the precise chromosome sequence position for 70% of the mapped sequences and SNPs. In addition, these tools also permitted the identification and mapping of 273 SNPs in 159 known genes. The availability of this SNP map will permit a wide range of genetic studies on a complete chromosome. The recognition of 45 genes with multiple SNPs, by allowing the construction of haplotypes, should facilitate pharmacogenetic studies in the corresponding regions.  相似文献   

3.
The essence of SNPs.   总被引:146,自引:0,他引:146  
A J Brookes 《Gene》1999,234(2):177-186
Single nucleotide polymorphisms (SNPs) are an abundant form of genome variation, distinguished from rare variations by a requirement for the least abundant allele to have a frequency of 1% or more. A wide range of genetics disciplines stand to benefit greatly from the study and use of SNPs. The recent surge of interest in SNPs stems from, and continues to depend upon, the merging and coincident maturation of several research areas, i.e. (i) large-scale genome analysis and related technologies, (ii) bio-informatics and computing, (iii) genetic analysis of simple and complex disease states, and (iv) global human population genetics. These fields will now be propelled forward, often into uncharted territories, by ongoing discovery efforts that promise to yield hundreds of thousands of human SNPs in the next few years. Major questions are now being asked, experimentally, theoretically and ethically, about the most effective ways to unlock the full potential of the upcoming SNP revolution.  相似文献   

4.
本文利用已测序的157 个滇金丝猴控制区(D-loop)片段,通过与参考序列比对,鉴别了线粒体D-loop 片段中的52 个SNP (Single Nucleotide Polymorphisms)位点,定义了30 种滇金丝猴单倍型,排除概率为0. 938。谱系及种群遗传结构分析结果与以前利用D-loop 片段的研究结果相似。同时表明基于粪便样品进行保护遗传学、谱系生物地理学、种群遗传学等研究时,与线粒体标记和微卫星标记相比,SNP 标记可能具有一定的优越性,并建议进一步分析滇金丝猴线粒体D-loop 全序列甚至线粒体全基因组上的SNPs 位点的信息,以促进滇金丝猴保护遗传学等研究的开展。  相似文献   

5.
新一代分子标记--SNPs及其应用   总被引:31,自引:0,他引:31  
邹喻苹  葛颂 《生物多样性》2003,11(5):370-382
单核苷酸多态性(SNPs)是广泛存在于基因组中的一类DNA序列变异,其频率为1%或更高。它是由单个碱基的转换或颠换引起的点突变,稳定而可靠,并通常以二等位基因的形式出现。采用生物芯片和DNA微阵列技术来检测SNP,便于对基因组进行大幅度和高通量分析。因此,作为新一代分子标记,SNP在生物学诸多领域具有广阔应用前景。本文简要叙述SNPs技术的发展历史、研究动态以及相关的理论,介绍了与SNPs相关的基本术语、概念及其特点,列举了发现与检测SNPs主要技术的原理和方法,同时还根据一些具体实例介绍了SNPs在模式动、植物遗传图谱构建、品种鉴定、物种起源与亲缘关系、连锁不平衡与关联分析及其在群体遗传结构及其变化机制研究中的应用。最后展望了SNPs在群体遗传、分子育种和生物进化等研究领域中的应用前景。  相似文献   

6.
A better understanding of the genotype–phenotype correlation of Atlantic salmon is of key importance for a whole range of production, life history and conservation biology issues attached to this species. High-density linkage maps integrated with physical maps and covering the complete genome are needed to identify economically important genes and to study the genome architecture. Linkage maps of moderate density and a physical bacterial artificial chromosome (BAC) fingerprint map for the Atlantic salmon have already been generated. Here, we describe a strategy to combine the linkage mapping with the physical integration of newly identified single nucleotide polymorphisms (SNPs). We resequenced 284 BAC-ends by PCR in 14 individuals and detected 180 putative SNPs. After successful validation of 152 sequence variations, genotyping and genetic mapping were performed in eight salmon families comprising 376 individuals. Among these, 110 SNPs were positioned on a previously constructed linkage map containing SNPs derived from expressed sequence tag (EST) sequences. Tracing the SNP markers back to the BACs enabled the integration of the genetic and physical maps by assigning 73 BAC contigs to Atlantic salmon linkage groups.  相似文献   

7.
An international effort is underway to generate a comprehensive haplotype map (HapMap) of the human genome represented by an estimated 300000 to 1 million ‘tag’ single nucleotide polymorphisms (SNPs). Our analysis indicates that the current human SNP map is not sufficiently dense to support the HapMap project. For example, 24.6% of the genome currently lacks SNPs at the minimal density and spacing that would be required to construct even a conservative tag SNP map containing 300 000 SNPs. In an effort to improve the human SNP map, we identified 140 696 additional SNP candidates using a new bioinformatics pipeline. Over 51 000 of these SNPs mapped to the largest gaps in the human SNP map, leading to significant improvements in these regions. Our SNPs will be immediately useful for the HapMap project, and will allow for the inclusion of many additional genomic intervals in the final HapMap. Nevertheless, our results also indicate that additional SNP discovery projects will be required both to define the haplotype architecture of the human genome and to construct comprehensive tag SNP maps that will be useful for genetic linkage studies in humans.  相似文献   

8.
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.  相似文献   

9.
Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many thousands of SNPs at many different loci in a given plant genome. For a number of important crop plants, SNP markers are now being used to design genotyping arrays containing thousands of markers spread over the entire genome and to analyse large numbers of samples. In this article, we discuss aspects that should be considered during the design of such large genotyping arrays and the analysis of individuals. The fact that crop plants are also often autopolyploid or allopolyploid is given due consideration. Furthermore, we outline some potential applications of large genotyping arrays including high-density genetic mapping, characterization (fingerprinting) of genetic material and breeding-related aspects such as association studies and genomic selection.  相似文献   

10.
Ciliates are unicellular eukaryotes with separate germline and somatic genomes and diverse life cycles, which make them a unique model to improve our understanding of population genetics through the detection of genetic variations. However, traditional sequencing methods cannot be directly applied to ciliates because the majority are uncultivated. Single‐cell whole‐genome sequencing (WGS) is a powerful tool for studying genetic variation in microbes, but no studies have been performed in ciliates. We compared the use of single‐cell WGS and bulk DNA WGS to detect genetic variation, specifically single nucleotide polymorphisms (SNPs), in the model ciliate Tetrahymena thermophila. Our analyses showed that (i) single‐cell WGS has excellent performance regarding mapping rate and genome coverage but lower sequencing uniformity compared with bulk DNA WGS due to amplification bias (which was reproducible); (ii) false‐positive SNP sites detected by single‐cell WGS tend to occur in genomic regions with particularly high sequencing depth and high rate of C:G to T:A base changes; (iii) SNPs detected in three or more cells should be reliable (an detection efficiency of 83.4–97.4% was obtained for combined data from three cells). This analytical method could be adapted to measure genetic variation in other ciliates and broaden research into ciliate population genetics.  相似文献   

11.
Reduced representation genome sequencing such as restriction‐site‐associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single‐nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome‐wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome‐wide set of SNP markers was available until now. The generated SNPs were widely distributed across the eel genome, aligning to 4779 different contigs and 19 703 different scaffolds. Significant variation was identified, with an average nucleotide diversity of 0.00529 across individuals. Results varied widely across the genome, ranging from 0.00048 to 0.00737 per locus. Based on the average nucleotide diversity across all loci, long‐term effective population size was estimated to range between 132 000 and 1 320 000, which is much higher than previous estimates based on microsatellite loci. The generated SNP resource consisting of 82 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome.  相似文献   

12.
SUMMARY: Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variations in closely related microbial species, strains or isolates. Some SNPs confer selective advantages for microbial pathogens during infection and many others are powerful genetic markers for distinguishing closely related strains or isolates that could not be distinguished otherwise. To facilitate SNP discovery in microbial genomes, we have developed a web-based application, SNPsFinder, for genome-wide identification of SNPs. SNPsFinder takes multiple genome sequences as input to identify SNPs within homologous regions. It can also take contig sequences and sequence quality scores from ongoing sequencing projects for SNP prediction. SNPsFinder will use genome sequence annotation if available and map the predicted SNP regions to known genes or regions to assist further evaluation of the predicted SNPs for their functional significance. SNPsFinder can generate PCR primers for all predicted SNP regions according to user's input parameters to facilitate experimental validation. The results from SNPsFinder analysis are accessible through the World Wide Web. AVAILABILITY: The SNPsFinder program is available at http://snpsfinder.lanl.gov/. SUPPLEMENTARY INFORMATION: The user's manual is available at http://snpsfinder.lanl.gov/UsersManual/  相似文献   

13.
A large number of putative single nucleotide polymorphisms (SNPs) have been identified from the bovine genome-sequencing project. However, few of these have been validated and many will turn out to be sequencing artefacts or have low minor allele frequencies. In addition, there is little information available on SNPs within coding regions, which are likely to be responsible for phenotypic variation. Therefore, additional SNP discovery is necessary to identify and validate polymorphisms both in specific genes and genome-wide. Sequence-tagged sites within 286 genes were resequenced from a panel of animals representing a wide range of European cattle breeds. For 80 genes, no polymorphisms were identified, and 672 putative SNPs were identified within 206 genes. Fifteen European cattle breeds (436 individuals plus available parents) were genotyped with these putative SNPs, and 389 SNPs were confirmed to have minor allele frequencies above 10%. The genes containing SNPs were localized on chromosomes by radiation hybrid mapping and on the bovine genome sequence by Blast . Flanking microsatellite loci were identified, to facilitate the alignment of the genes containing the SNPs in relation to mapped quantitative trait loci. Of the 672 putative SNPs discovered in this work, only 11 were found among the validated SNPs and 100 were found among the approximately 2.3 million putative SNPs currently in dbSNP. The genes studied in this work could be considered as candidates for traits associated with beef production and the SNPs reported will help to assess the role of the genes in the genetic control of muscle development and meat quality. The allele frequency data presented allows the general utility of the SNPs to be assessed.  相似文献   

14.
A genetic linkage map is a powerful research tool for mapping traits of interest and is essential to understanding genome evolution. The aim of this study is to provide an expanded genetic linkage map of common carp to effectively carry out quantitative trait loci analysis and conduct comparative mapping analysis between lineages. Here, we constructed a genetic linkage map of common carp (Cyprinus carpio L.) using microsatellite and single-nucleotide polymorphism (SNP) markers in a 159 sibling family. A total of 246 microsatellites and 306 SNP polymorphic markers were genotyped in this family. Linkage analysis using JoinMap 4.0 organized 427 markers (186 microsatellites and 241 SNPs) to 50 linkage groups, ranging in size from 1.4 to 130.1 cM. Each group contained 2-30 markers. The linkage map covered a genetic distance of 2,039.2 cM and the average interval for markers within the linkage groups was approximately 6.4 cM. In addition, comparative genome analysis within five model teleost fish revealed a high percentage (74.7%) of conserved loci corresponding to zebrafish chromosomes. In most cases, each zebrafish chromosome comprised two common carp linkage groups. The comparative analysis also revealed independent chromosome rearrangements in common carp and zebrafish. The linkage map will be of great assistance in mapping genes of interest and serve as a reference to approach comparative mapping and enable further insights into the comprehensive investigations of genome evolution of common carp.  相似文献   

15.
Genetic maps serve as frameworks for determining the genetic architecture of quantitative traits, assessing structure of a genome, as well as aid in pursuing association mapping and comparative genetic studies. In this study, a dense genetic map was constructed using a high-throughput 1,536 EST-derived SNP GoldenGate genotyping platform and a global consensus map established by combining the new genetic map with four existing reliable genetic maps of apple. The consensus map identified markers with both major and minor conflicts in positioning across all five maps. These major inconsistencies among marker positions were attributed either to structural variations within the apple genome, or among mapping populations, or genotyping technical errors. These also highlighted problems in assembly and anchorage of the reference draft apple genome sequence in regions with known segmental duplications. Markers common across all five apple genetic maps resulted in successful positioning of 2875 markers, consisting of 2033 SNPs and 843 SSRs as well as other specific markers, on the global consensus map. These markers were distributed across all 17 linkage groups, with an average of 169±33 marker per linkage group and with an average distance of 0.70±0.14 cM between markers. The total length of the consensus map was 1991.38 cM with an average length of 117.14±24.43 cM per linkage group. A total of 569 SNPs were mapped onto the genetic map, consisting of 140 recombinant individuals, from our recently developed apple Oligonucleotide pool assays (OPA). The new functional SNPs, along with the dense consensus genetic map, will be useful for high resolution QTL mapping of important traits in apple and for pursuing comparative genetic studies in Rosaceae.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) are believed to contain relevant information and have been therefore extensively used as genetic markers in population and conservation genetics, and molecular ecology studies. This study reports on the identification of potential SNPs in a diploid European sea bass Dicentrarchus labrax genome by using reference sequences from three assembled chromosomes and mapping all WGS datasets onto them (3× Sanger, 3× 454 and 20× SOLEXA). A total of 20,779 SNPs were identified over the 1469 gene loci and intergenic space analysed. Within chromosomes the occurrence of SNPs was the lowest in exons and higher in introns and intergenic regions, which may be explained by the fact, that coding regions are under strong selective pressure to maintain their biological function. The ratio of nonsynonymous to synonymous mutations was smaller than one for all the chromosomes, suggesting that most of deleterious nonsynonymous mutations were eliminated by negative selection. SNPs were not uniformly distributed over the chromosomes. Two chromosomes exhibited large regions with extremely low SNP density, which might represent homozygous regions in the diploid genome. The results of this study show how SNP detection can take profit from sequencing a single diploid individual, but also uncover the limits of such an approach. SNPs that have been identified will support marker development for genetic linkage mapping, population genetics and aquaculture related questions in general.  相似文献   

17.
ABSTRACT: BACKGROUND: Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. RESULTS: An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. CONCLUSIONS: The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. KEYWORDS: Grape; Genetic map; Next generation sequencing (NGS); Restriction-site associated DNA (RAD).  相似文献   

18.
When multiple genetic maps exist for a species, integration of these maps requires a set of common markers be genotyped across the individual mapping populations. In the turkey, three genetic maps based on separate mapping populations are available. In this study, SNP-based markers were developed for integrating the cDNA/RFLP-based map (1) with microsatellite markers of the second-generation turkey genome map (2). Forty-eight primer sets were designed and tested and 33 (69%) correctly amplified turkey genomic DNA by PCR. Putative SNPs were detected in 20 (61%) of the amplified gene fragments, and 10 SNP markers were subsequently genotyped by PCR/RFLP for segregation analysis. Eight SNP markers were incorporated into the turkey genetic map.  相似文献   

19.
Association mapping (AM), also known as linkage disequilibrium (LD) mapping, is a viable approach to overcome limitations of pedigree-based quantitative trait loci (QTL) mapping. In AM, genotypic and phenotypic correlations are investigated in unrelated individuals. Unlike QTL mapping, AM takes advantage of both LD and historical recombination present within the gene pool of an organism, thus utilizing a broader reference population. In plants, AM has been used in model species with available genomic resources. Pursuing AM in tree species requires both genotyping and phenotyping of large populations with unique architectures. Recently, genome sequences and genomic resources for forest and fruit crops have become available. Due to abundance of single nucleotide polymorphisms (SNPs) within a genome, along with availability of high-throughput resequencing methods, SNPs can be effectively used for genotyping trees. In addition to DNA polymorphisms, copy number variations (CNVs) in the form of deletions, duplications, and insertions also play major roles in control of expression of phenotypic traits. Thus, CNVs could provide yet another valuable resource, beyond those of microsatellite and SNP variations, for pursuing genomic studies. As genome-wide SNP data are generated from high-throughput sequencing efforts, these could be readily reanalysed to identify CNVs, and subsequently used for AM studies. However, forest and fruit crops possess unique architectural and biological features that ought to be taken into consideration when collecting genotyping and phenotyping data, as these will also dictate which AM strategies should be pursued. These unique features as well as their impact on undertaking AM studies are outlined and discussed.  相似文献   

20.
A genetic linkage map of the channel catfish genome (N = 29) was constructed using EST-based microsatellite and single nucleotide polymorphism (SNP) markers in an interspecific reference family. A total of 413 microsatellites and 125 SNP markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 allowed mapping of 331 markers (259 microsatellites and 72 SNPs) to 29 linkage groups. Each linkage group contained 3–18 markers. The largest linkage group contained 18 markers and spanned 131.2 cM, while the smallest linkage group contained 14 markers and spanned only 7.9 cM. The linkage map covered a genetic distance of 1811 cM with an average marker interval of 6.0 cM. Sex-specific maps were also constructed; the recombination rate for females was 1.6 times higher than that for males. Putative conserved syntenies between catfish and zebrafish, medaka, and Tetraodon were established, but the overall levels of genome rearrangements were high among the teleost genomes. This study represents a first-generation linkage map constructed by using EST-derived microsatellites and SNPs, laying a framework for large-scale comparative genome analysis in catfish. The conserved syntenies identified here between the catfish and the three model fish species should facilitate structural genome analysis and evolutionary studies, but more importantly should facilitate functional inference of catfish genes. Given that determination of gene functions is difficult in nonmodel species such as catfish, functional genome analysis will have to rely heavily on the establishment of orthologies from model species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号