首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The main focus of this study was to evaluate the effects of soil moisture and temperature on temporal variation of N2O, CO2 and CH4 soil-atmosphere exchange at a primary seasonal tropical rainforest (PF) site in Southwest China and to compare these fluxes with fluxes from a secondary forest (SF) and a rubber plantation (RP) site. Agroforestry systems, such as rubber plantations, are increasingly replacing primary and secondary forest systems in tropical Southwest China and thus effect the N2O emission in these regions on a landscape level. The mean N2O emission at site PF was 6.0 ± 0.1 SE μg N m−2 h−1. Fluxes of N2O increased from <5 μg N m−2 h−1 during dry season conditions to up to 24.5 μg N m−2 h−1 with re-wetting of the soil by the onset of first rainfall events. Comparable fluxes of N2O were measured in the SF and RP sites, where mean N2O emissions were 7.3 ± 0.7 SE μg N m−2 h−1 and 4.1 ± 0.5 SE μg N m−2 h−1, respectively. The dependency of N2O fluxes on soil moisture levels was demonstrated in a watering experiment, however, artificial rainfall only influenced the timing of N2O emission peaks, not the total amount of N2O emitted. For all sites, significant positive correlations existed between N2O emissions and both soil moisture and soil temperature. Mean CH4 uptake rates were highest at the PF site (−29.5 ± 0.3 SE μg C m−2 h−1), slightly lower at the SF site (−25.6 ± 1.3 SE μg C m−2 h−1) and lowest for the RP site (−5.7 ± 0.5 SE μg C m−2 h−1). At all sites, CH4 uptake rates were negatively correlated with soil moisture, which was also reflected in the lower uptake rates measured in the watering experiment. In contrast to N2O emissions, CH4 uptake did not significantly correlate with soil temperature at the SF and RP sites, and only weakly correlated at the PF site. Over the 2 month measurement period, CO2 emissions at the PF site increased significantly from 50 mg C m−2 h−1 up to 100 mg C m−2 h−1 (mean value 68.8 ± 0.8 SE mg C m−2 h−1), whereas CO2 emissions at the SF and RP site where quite stable and varied only slightly around mean values of 38.0 ± 1.8 SE mg C m−2 h−1 (SF) and 34.9 ± 1.1 SE mg C m−2 h−1 (RP). A dependency of soil CO2 emissions on changes in soil water content could be demonstrated for all sites, thus, the watering experiment revealed significantly higher CO2 emissions as compared to control chambers. Correlation of CO2 emissions with soil temperature was significant at the PF site, but weak at the SF and not evident at the RP site. Even though we demonstrated that N and C trace gas fluxes significantly varied on subdaily and daily scales, weekly measurements would be sufficient if only the sink/ source strength of non-managed tropical forest sites needs to be identified.  相似文献   

3.
Tropical forests are a significant global source of the greenhouse gas nitrous oxide (N2O). Predicted environmental changes for this biome highlight the need to understand how simultaneous changes in precipitation and labile carbon (C) availability may affect soil N2O production. We conducted a small‐scale throughfall and leaf litter manipulation in a lowland tropical forest in southwestern Costa Rica to test how potential changes in both water and litter derived labile C inputs to soils may alter N2O emissions. Experimentally reducing throughfall in this wet tropical forest significantly increased soil emissions of N2O, and our data suggest that at least part of this response was driven by an increase in the concentration of dissolved organic carbon [DOC] inputs delivered from litter to soil under the drier conditions. Furthermore, [DOC] was significantly correlated with N2O emissions across both throughfall and litterfall manipulation plots, despite the fact that native NO3? pools in this site were generally small. Our results highlight the importance of understanding not only the potential direct effects of changing precipitation on soil biogeochemistry, but also the indirect effects resulting from interactions between the hydrologic, C and N cycles. Finally, over all sampling events we observed lower mean N2O emissions (<1 ng N2O‐N cm?2 h?1) than reported for many other lowland tropical forests, perhaps reflecting a more general pattern of increasing relative N constraints to biological activity as one moves from drier to wetter portions of the lowland tropical forest biome.  相似文献   

4.
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural runoff through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient runoff from plant nurseries and compares these to similar forest soils not exposed to nutrient runoff. Nursery runoff also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g−1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g−1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g−1 in soil slurries. The addition of PO4 (5 μg PO4-P g−1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forest soils.  相似文献   

5.
In order to understand the role of nitrification and denitrification in the accumulation of nitrous oxide (N2O) in the hypolimnetic water of brackish Lake Nakaumi, the effects of dissolved oxygen (DO) concentration on these activities were investigated by incubation experiments. N2O was produced during the oxidation of NH4 + to NO2 in nitrification and during the reduction of NO3 to N2 in denitrification. N2O-producing activity by nitrification (N2ON) increased markedly with decreasing concentrations of DO. Low DO (10%–30% saturation) induced high N2ON. In contrast to nitrification, N2O-producing activity by denitrification (N2OD) decreased with decreasing concentrations of DO. Little N2O was accumulated during denitrification under low-level conditions of DO (10%–30%), because of further reduction of N2O to N2. It can therefore be assumed that N2O produced as the by-product of nitrification is concurrently reduced to N2 by denitrification under low-DO conditions. This would result in no substantial accumulation of N2O during active nitrification in the hypolimnetic water of Lake Nakaumi. Received: July 6, 2001 / Accepted: December 10, 2001  相似文献   

6.
Abstract Using aerobic soil slurry technique nitrification and nitrous oxide production were studied in samples from a pine site in Western Finland. The site received atmospheric ammonium deposition of 7–33 kg N ha−1 a−1 from a mink farm. The experiments with soil slurries showed that the nitrification potential in the litter layer was higher at pH 6 than at pH 4. However, the nitrification potentials in the samples from the organic and mineral horizons at pH 6 and 4 were almost equal. Also N2O was produced at a higher rate at pH 6 than at pH 4 in slurries of the litter layer samples. The reverse was true for samples from the organic and mineral horizons. The highest N2O production and nitrification rates were measured in the suspensions of litter layer samples. Nitrification activity in field-moist soil samples was lower than the activity in the slurries indicating that the availability of ammonium limited nitrification in these soils. Acetylene (2.5 kPa) retarded nitrification activity (70-–100%) and N2O production (40 – 90%) in soil slurries. Acetylene inhibited the N2O production by 40–60% during the first 3 days after its addition to field-moist samples incubated in aerobic atmosphere. After 3 days the inhibition became much lower (4–5%). The results indicate that, in soil profiles of boreal coniferous forests receiving ammonium deposition, chemolithotrophic nitrification may have importance in the N2O production, and that changes in soil pH affect differently nitrification as well as N2O production in litter and deeper soil layers.  相似文献   

7.
Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests   总被引:2,自引:0,他引:2  
We studied greenhouse gas (GHG) fluxes in two differently loaded riparian Alnus incana-dominated forests in agricultural landscapes of southern Estonia: a 33-year-old stand in Porijõgi, in which the uphill agricultural activities had been abandoned since the middle of the 1990s, and a 50-year-old stand in Viiratsi, which still receives polluted lateral flow from uphill fields fertilized with pig slurry. In Porijõgi, closed-chamber based sampling lasted from October 2001 to October 2009, whereas in Viiratsi the sampling period was from November 2003 to October 2009. Both temporal and spatial variations in all GHG gas fluxes were remarkable. Local differences in GHG fluxes between micro-sites (“Edge”, “Dry” and “Wet” in Porijõgi, and “Wet”, “Slope” and “Dry” in Viiratsi) were sometimes greater than those between sites. Median values of GHG fluxes from both sites over the whole study period and all microsites did not differ significantly, being 45 and 42 mg CO2-C m−2 h−1, 8 and 0.5 μg CH4-C m−2 h−1, 1.0 and 2.1 mg N2-N m−2 h−1, and 5 and 9 μg N2O-N m−2 h−1, in Porijõgi and Viiratsi, respectively. The N2:N2O ratio in Viiratsi (40-1200) was lower than in Porijõgi (10-7600). The median values-based estimation of the Global Warming Potential of CH4 and N2O was 19 and 185 kg CO2 equivalents (eq) ha−1 yr−1 in Porijõgi and −14 and 336 kg CO2 eq ha−1 yr−1 in Viiratsi, respectively. A significant Spearman rank correlation was found between the mean monthly air temperature and CO2, CH4 and N2 fluxes in Porijõgi, and N2O flux in Viiratsi, and between the monthly precipitation and CH4 fluxes in both study sites. Higher groundwater level significantly increases CH4 emission and decreases CO2 and N2O emission, whereas higher soil temperature significantly increases N2O, CH4 and N2 emission values. In Porijõgi, GHG emissions did not display any discernable trend, whereas in Viiratsi a significant increase in CO2, N2, and N2O emissions has been found. This may be a result of the age of the grey alder stand, but may also be caused by the long-term nutrient load of this riparian alder stand, which indicates a need for the management of similar heavily loaded riparian alder stands.  相似文献   

8.
9.
Aim To determine whether different abundances of introduced species of Cinchona (Rubiaceae) affect species composition and facilitate species richness in managed tropical forests, to test whether any facilitative effects on understorey species depend on forest type, and to investigate whether facilitative effects can be attributed to the ‘substitutive facilitation model’. Location Makawao Forest Reserve on Maui, Hawai’i, USA. Methods Cinchona species (Cinchona pubescens and Cinchona calisaya) were mapped within various forest types. In three forest types (ageing Eucalyptus and Pinus plantations, and near‐natural Acacia koa forests), we analysed environmental parameters (e.g. canopy cover, litter cover, pH value and soil depth) and the species composition of Cinchona‐invaded and non‐invaded plots; data were compared based on Cinchona cover and forest types. Habitat modelling for several endemic species and tree ferns was carried out to test whether Cinchona cover is an important variable for the probability of occurrence of these endemics. Results Cinchona species have naturalized mainly in Eucalyptus and Pinus plantations and Acacia koa forests and here add an additional shrub layer. In contrast to other studies, we revealed facilitative effects of Cinchona on native species within all forest types. Species richness is about 20% higher in invaded plots than in non‐invaded plots, and these show a nearly 50% higher proportion of endemic species, including tree ferns. The proportion of endemics even increases with increasing Cinchona cover. For several endemics, Cinchona is found to be an important variable for the probability of occurrence, and the removal of Cinchona cover as an explanatory variable lowers the model fit. In addition to Cinchona, variables delineating vegetation structure and light availability have a strong effect on the model fit. Main conclusions In the structurally simplified Hawaiian forests studied, Cinchona facilitated endemic species in accordance with the ‘substitutive facilitation model’. This contrasts with the results of an earlier study in the naturally treeless Galápagos highlands, which revealed a sharp decrease in the abundance of endemics under Cinchona canopy. These results illustrate that, through the same structural change (addition of a vegetation layer), an invasive species may exert divergent effects across different ecosystem types. The facilitation of endemic understorey species by invasive tree species in managed forests leads to a dilemma in conservation but also to new perspectives for ecosystem restoration.  相似文献   

10.
降雨和土壤湿度对贵州旱田土壤N2O释放的影响   总被引:15,自引:0,他引:15  
以南方亚热带代表性旱田土壤-贵州玉米-油菜轮作田、大豆-冬小麦轮作田和休耕地为观测对象,研究土壤N2O释放通量季节变化与降雨和土壤湿度的关系,同时,采用DNDC模型定量探讨了未来降雨量变化对土壤N2O释放的潜在影响,结果表明,降雨与N2O释放峰间存在明显的驱动-响应关系,N2O释放通量与降雨量和土壤湿度间存在正相关性,模型检验结果表明,夏秋季土壤N2O释放通量与降雨量变化呈正相关,而降雨量的大幅度增加或下降将引起冬春季土壤N2O释放通量的微弱下降。  相似文献   

11.
The effect of nitrate, ammonium and urea on the mineralization of [(14)C]hexadecane (C(16)H(34)) and on denitrification was evaluated in two soils contaminated with diesel fuel. In soil A, addition of N fertilizers did not stimulate or inhibit background hexadecane mineralization (4.3 mg C(16)H(34) kg(-1) day(-1)). In soil B, only NaNO(3) stimulated hexadecane mineralization (0.91 mg C(16)H(34) kg(-1) day(-1)) compared to soil not supplemented with any nitrogen nutrient (0.17 mg C(16)H(34) kg(-1) day(-1)). Hexadecane mineralization was not stimulated in this soil by NH(4)NO(3) (0.13 mg C(16)H(34) kg(-1) day(-1)), but the addition of NH(4)Cl or urea suppressed hexadecane mineralization (0.015 mg C(16)H(34) kg(-1) day(-1)). Addition of 2 kPa C(2)H(2) did not inhibit the mineralization process in either soil. Denitrification occurred in both soils studied when supplemented with NaNO(3) and NH(4)NO(3), but was not detected with other N sources. Denitrification started after a longer lag in soil A (10 days) than in soil B (4 days). In soil A microcosms supplemented with NaNO(3) or NH(4)NO(3), rates of denitrification were 20.6 and 13.6 mg NO(3)(-) kg(-1) day(-1), respectively, and in soil B, they were 18.5 and 12.5 mg NO(3)(-) kg(-1) day(-1), respectively. We conclude that denitrification may lead to a substantial loss of nitrate, making it unavailable to the mineralizing bacterial population. Nitrous oxide was an important end-product accounting for 30-100% of total denitrification. These results indicate the need for preliminary treatability studies before implementing full-scale treatment processes incorporating commercial fertilizers.  相似文献   

12.
Based on a review of N2O field studies in Europe, major soil, climate and management controls of N2O release from agricultural mineral soils in the European Union have been identified. Data for these N2O emission drivers can easily be gathered from statistical services. Using stepwise multivariate linear regression analysis, empirical first order models of N2O emissions have been established which allow – in contrast to existing large-scale approaches – a regionally disaggregated estimation of N2O emissions at sub-national, national and continental level in the temperate and boreal climate regions of Europe. Arable soils showed lower mean and maximum emissions in oceanic temperate climate (Temperate West) than in pre-alpine temperate and sub-boreal climate (Sub-boreal Europe). Therefore, two separate regression models were developed. Nitrous oxide emissions from arable soils the Temperate West amount to an average flux rate below 2 kg N2O-N ha–1 yr–1 and rarely exceed 5 kg N2O-N ha–1 yr–1. They are modelled by the parameters fertiliser, topsoil organic carbon and sand content. In Sub-boreal European arable soils, N2O emissions vary in a much wider range between 0 and 27 kg N2O-N ha–1 yr–1 in dependence of available nitrogen, represented in the model by fertiliser and topsoil nitrogen content. Compared to existing methods for large scale inventories, the regression models allow a better regional fit to measured values since they integrate additional driving forces for N2O emissions. For grasslands, a fertiliser-based model was established which yields higher emission estimates than existing ones. Due to an extreme variability, no climate, soil nor management parameters could be included in the empirical grasslands model.  相似文献   

13.
西双版纳热带森林土壤种子库的季节变化   总被引:9,自引:0,他引:9  
唐勇  曹敏  盛才余   《广西植物》2000,20(4):371-376
通过萌发实验法对西双版纳地区的一类热带季节雨林 (番龙眼、千果榄仁 )和 2类次生林(白背桐林、中平树林 )的土壤种子库的季节变化进行了探讨。结果表明 :该地区的土壤种子库动态具有明显的季节性。季节雨林的土壤种子库储量相对稳定 ,土壤上层 ( 0~ 2 cm )的种子储量在雨季末期较大。2类次生林土壤种子库的变化则相反 ,土壤种子库中的种子种类在旱季末期较雨季末期多 ,土壤上层的种子储量在旱季末期较大。各样地均有一些种类只出现在旱季末期或雨季末期。种子在土壤种子库的动态与植物的繁殖物候和所处的环境紧密相关 ,不同种类植物的土壤种子库由于植物本身的生物学特性、传播方式和所处环境的影响而表现出不同的动态模式  相似文献   

14.
Emissions of N2O and CO2 were measured following combined applications of 15N-labelled fertiliser (100 μg N g−1; 10 atom % excess 15N) and organic olive crop weed residues (Avena sativa, Ononis viscosa, Ridolfia segetum and Olea europea; 100 μg N g−1) to a silt loam soil under controlled environment conditions. The objective was to determine the effect of varying combinations of inorganic fertiliser and plant residues on these emissions and soil mineral N dynamics. Emissions were generally increased following application of residues alone, with 23 ng N2O–N g−1 soil (2 ng N2O–N g−1 soil mg−1 biomass) and 389 μg CO2–C g−1 soil (39 μg CO2–C g−1 soil mg−1 biomass) emitted over 28 days after addition of the Ridolfia residues in the absence of fertiliser-N. N2O emissions from these residue-only treatments were strongly negatively correlated with residue lignin content (r = −0.91; P < 0.05), total carbon content (r = −0.90; P < 0.05) and (lignin + polyphenol)-to-N ratio (r = −0.70; P < 0.1). However, changes in the net input of these compounds through application of 25:75, 50:50 and 75:25 proportional mixtures of Avena and Ononis residues had no effect on emissions compared to their single (0:100 or 100:0) applications. Addition of fertiliser-N increased emissions (by up to 30 ng N2O–N g−1 28 days−1; 123%), particularly from the low residue-N treatments (Avena and Ridolfia) where a greater quantity of biomass was applied, resulting in emissions above that of the sum from the unfertilised residue and fertilised control treatments. In contrast, fertiliser application had no impact on emissions from the Olea treatment with the highest polyphenol (2%) and lignin (11%) contents due to strong immobilisation of soil N, and the 15N–N2O data indicated that residue quality had no effect on the denitrification of applied fertiliser-N. Such apparent inconsistencies mean that before the potential for manipulating N input (organic + inorganic) to lower gaseous N losses can be realised, first the nature and extent of interactions between the different N sources and any interactions with other compounds released from the residues need to be better understood.  相似文献   

15.
Nitrogen (N) enrichment of tropical ecosystems is likely to increase with rapid industrial and agricultural development, but the ecological consequences of N additions in these systems are not well understood. We measured soil N- oxide emissions and N transformations in primary rain forest ecosystems at four elevations and across two substrate types on Mt. Kinabalu, Borneo, before and after short-term experimental N additions. We also measured N pools and fluxes across a land use gradient of primary forest, burned secondary forest, and fertilized agriculture. Background soil N2O and NO emissions in primary forest decreased with elevation, and soils derived from sedimentary substrates had larger pools of inorganic N, rates of nitrification, and N-oxide fluxes than ultrabasic soils when there were significant differences between substrate types. N-oxide emissions after N additions and background rates of nitrification were low in all soils derived from ultrabasic substrates compared to sedimentary substrates, even at lowland sites supporting, diverse Dipterocarp forests growing on morphologically similar Oxisols. Rates of potential nitrification were good predictors of N-oxide emissions after N additions. N2O and NO fluxes were largest at low elevations and on sedimentary-derived soils compared to ultrabasic-derived soils, even at the smallest addition of N, 15kgNha–1. Because current methods of soil classification do not explicitly characterize a number of soil chemical properties important to nutrient cycling, the use of soil maps to extrapolate biogeochemical processes to the region or globe may be limited in its accuracy and usefulness. In agricultural systems, management practices were more important than substrate type in controlling N-oxide emissions and soil N cycling. N-oxide fluxes from agricultural fields were more than an order of magnitude greater than from primary forests on the same substrate type and at the same elevation. As primary forests are cleared for intensive agriculture, soil N2O and NO emissions are likely to far exceed those from the most N-saturated tropical forest ecosystems. This study highlights the inter-dependence of climate, substrate age, N deposition, and land-use practices determining N cycling and N-oxide emissions in humid tropical regions.  相似文献   

16.
The soil emission rates (fluxes) of nitrous oxide (N2O) and nitrogen oxides (NO + NO2 = NO x ) through a seasonal snowpack were determined by a flux gradient method from near-continuous 2-year measurements using an automated system for sampling interstitial air at various heights within the snowpack from a subalpine site at Niwot Ridge, Colorado. The winter seasonal-averaged N2O fluxes of 0.047–0.069 nmol m−2 s−1 were ~15 times higher than observed NO x fluxes of 0.0030–0.0067 nmol m−2 s−1. During spring N2O emissions first peaked and then dropped sharply as the soil water content increased from the release of snowpack meltwater, while other gases, including NO x and CO2 did not show this behavior. To compare and contrast the winter fluxes with snow-free conditions, N2O fluxes were also measured at the same site in the summers of 2006 and 2007 using a closed soil chamber method. Summer N2O fluxes followed a decreasing trend during the dry-out period after snowmelt, interrupted by higher values related to precipitation events. These peaks were up to 2–3 times higher than the background summer levels. The integrated N2O-N loss over the summer period was calculated to be 1.1–2.4 kg N ha−1, compared to ~0.24–0.34 kg N ha−1 for the winter season. These wintertime N2O fluxes from subniveal soil are generally higher than the few previously published data. These results are of the same order of magnitude as data from more productive ecosystems such as fertilized grasslands and high-N-cycling forests, most likely because of a combination of the relatively well-developed soils and the fact that subnivean biogeochemical processes are promoted by the deep, insulating snowpack. Hence, microbially mediated oxidized nitrogen emissions occurring during the winter can be a significant part of the N-cycle in seasonally snow-covered subalpine ecosystems.  相似文献   

17.
Nitrous oxide in brackish Lakes Shinji and Nakaumi, Japan   总被引:1,自引:0,他引:1  
Nitrous oxide (N2O) was measured monthly from September 1997 to August 1998 in the brackish Lakes Shinji and Nakaumi, Japan. N2O (5–37 μg N l−1) was supersaturated in the overlying water on lake sediments from October 1997 to January 1998. The N2O concentration in the hypolimnion was higher than that in the epilimnion on 17 October 1997, when N2O was first observed in a water column of Lake Nakaumi. Afterward, N2O was almost uniform throughout the water column and then disappeared on 16 February 1998. On the one hand, large amounts of N2O were found throughout the year in the interstitial water in Lake Shinji, where a high concentration of nitrate was discharged from the Hii River. On the other hand, in Lake Nakaumi, stratified by halocline, a high concentration of N2O was observed in the interstitial water only from winter to spring. N2O concentrations in the interstitial water were about 10 to 1000 times as large as those in the overlying water. These results imply that N2O was mainly produced at the sediment-water interface and was diffused to the overlying water. It was also suggested that the accumulation of N2O in the sediment-water system was accelerated by a high concentration of hydrogen sulfide. Received: July 6, 2000 / Accepted: November 30, 2000  相似文献   

18.
Decomposition rate constants were measured for boles of 155 large dead trees (>10 cm diameter) in central Amazon forests. Mortality data from 21 ha of permanent inventory plots, monitored for 10–15 years, were used to select dead trees for sampling. Measured rate constants varied by over 1.5 orders of magnitude (0.015–0.67 year–1), averaging 0.19 year–1 with predicted error of 0.026 year. Wood density and bole diameter were significantly and inversely correlated with rate constants. A tree of average biomass was predicted to decompose at 0.17 year–1. Based on mortality data, an average of 7.0 trees ha–1 year–1 died producing 3.6 Mg ha–1 year–1 of coarse litter (>10 cm diameter). Mean coarse litter standing-stocks were predicted to be 21 Mg ha–1, with a mean residence time of 5.9 years, and a maximum mean carbon flux to the atmosphere of 1.8 Mg C ha–1 year–1. Total litter is estimated to be partitioned into 16% fine wood, 30% coarse wood, and 54% non-woody litter (e.g., leaves, fruits, flowers). Decomposition rate constants for coarse litter were compiled from 20 globally distributed studies. Rates were highly correlated with mean annual temperature, giving a respiration quotient (Q 10) of 2.4 (10°C–1). Received: 14 June 1999 / Accepted: 31 August 1999  相似文献   

19.
Greenhouse gas emissions from a constructed wetland in southern Sweden   总被引:1,自引:0,他引:1  
This paper investigates the greenhouse gas emissions from a Swedish wetland, constructed to decrease nutrient content in sewage treatment water. To evaluate the effect of the construction in terms of greenhouse gas emissions we carried out ecosystem-atmosphere flux measurements of CO2, CH4 and N2O using a closed chamber technique. To evaluate the importance of vascular plant species composition to gas emissions we distributed the measurement plots over the three dominating plant species at the field site, i.e., Typha latifolia, Phragmites australis and Juncus effusus. The fluxes of CO2 (total respiration), CH4 and N2O from vegetated plots ranged from 1.39 to 77.5 (g m−2 day−1), −377 to 1387 and −13.9 to 31.5 (mg m−2 day−1) for CO2, CH4 and N2O, respectively. Presence of vascular plants lead as expected to significantly higher total respiration rates compared with un-vegetated control plots. Furthermore, we found that the emission rates of N2O and CH4 was affected by presence of vascular plants and tended to be species-specific. We assessed the integrated greenhouse warming effect of the emissions using a Global Warming Potential over a 100-year horizon (GWP100) and it corresponded to 431 kg CO2 equivalents m−2 day−1. Assuming a 7-month season with conditions similar to the study period this is equal to 90 tonnes of CO2 equivalents annually. N2O emissions were responsible for one third of the estimated total greenhouse forcing. Furthermore, we estimated that the emission from the forested bog that was the precursor land to Magle constructed wetland amounted to 18.6 tonnes of CO2 equivalents annually. Hence, the constructed wetland has increased annual greenhouse gas emissions by 71.4 tonnes of CO2 equivalents for the whole area. Our findings indicate that management processes in relation to wetland construction projects must consider the primary function of the wetland in decreasing eutrophication, in relation to other positive aspects on for instance plant and animal life and recreation as well as possible negative climatic aspects of increased emissions of CH4 and N2O.  相似文献   

20.
The nitrous oxide (N2O) reductase (nos) gene cluster from Achromobacter cycloclastes has been cloned and sequenced. Seven protein coding regions corresponding to nosR, nosZ (structural N2O reductase gene), nosD, nosF, nosY, nosL, and nosX are detected, indicating a genetic organization similar to that of Rhizobium meliloti. To aid homology studies, nosR from R. meliloti has also been sequenced. Comparison of the deduced amino acid sequences with corresponding sequences from other organisms has also allowed structural and functional inferences to be made. The heterologous expression of NosD, NosZ (N2O reductase), and NosL is also reported. A model of the CuA site in N2O reductase, based on the crystal structure of this site in bovine heart cytochrome c oxidase, is presented. The model suggests that a His residue of the CuA domain may be a ligand to the catalytic CuZ site. In addition, the origin of the spectroscopically-observed Cys coordination to CuZ is discussed in terms of the sequence alignment of seven N2O reductases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号