首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen has been utilized as a natural biomaterial because of its high biocompatibility, adhesiveness to cells and tissues, and biodegradability. The present study developed a recombinant technology to confer a mitogenic activity on type III collagen by fusing it to epidermal growth factor (EGF) at the collagen's N-terminus. The chimeric protein of EGF-collagen was synthesized in insect cells by the baculovirus-insect cell expression system. The fusion protein was shown to hold the triple helical conformation of collagen and the mitogenic activity of EGF. It was also demonstrated that the chimeric protein can be immobilized on tissue culture dishes as a fibrous form and in collagen fibrils without abolishing the original mitogenic activity of EGF. This fusion protein can be utilized as a biocompatible, biodegradable, and adhesive fibrous mitogen for a variety of purposes in the area of tissue engineering.  相似文献   

2.
A spectroscopic collagenase assay using peroxidase-labeled collagen   总被引:1,自引:0,他引:1  
A quantitative collagenase assay detecting soluble collagen fragments is described in this paper. Using the reagent N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) type I collagen was conjugated with horseradish peroxidase (POD) which was employed as a reporter enzyme. POD was preferentially linked to the TC B fragment in a ratio of 1.4 mol POD/mol collagen. The conjugation product was immobilized on AH-Sepharose via carbodiimide coupling to form the final collagenase substrate used in the assay. POD activity in the supernatants caused by liberated TC B fragments exhibited a linear relationship for collagenase concentrations up to 100 micrograms/ml bacterial collagenase. Over an incubation period of 4 h the lowest detection limits found were 20 ng/100 microliters for bacterial collagenase and 60 ng/100 microliters for human leukocyte collagenase. Incubation of the assay mixture with 5 micrograms trypsin resulted in 3.8% of the activity released by the equivalent amount of leukocyte collagenase. The assay developed here has been shown to be sensitive and specific for collagenase, with the additional advantage that this method is suited for simple and economic handling.  相似文献   

3.
To produce a molecule that will kill activated T cells as well as lymphomas and leukemias expressing interleukin 2 (IL2) receptors, we have created a recombinant chimeric protein in which IL2 is attached in peptide linkage to a truncated mutant form of Pseudomonas exotoxin (PE) (Lorberboum-Galski, H., FitzGerald, D.J.P., Chandhary, V.K., Adhya, S., and Pastan, I. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1922-1926). Although this molecule was very active on rodent cells, it had lower activity on some human cell types. A new chimeric protein termed IL2-PE664Glu has been constructed that is extremely toxic to both phytohemagglutinin blasts and mixed leukocyte reaction blasts prepared from monkey and human lymphocytes. The chimeric gene encoding this protein was constructed by fusing a cDNA clone for human interleukin 2 to the 5' end of a mutated cDNA encoding a full-length PE molecule. Four amino acids in domain I of PE were changed thus decreasing its nonspecific toxicity. IL2-PE664Glu is a much more active cytotoxic molecule for primate and human-activated T cells than IL2-PE40 which is a chimeric protein that was found to be an effective immunosuppressive agent in rodent models. Our results indicate that IL2-PE664Glu should be evaluated as an immunosuppressive agent for the treatment of human immune disorders in which activated T cells expressing the IL2 receptor are prominent.  相似文献   

4.
The capacity of human T4 cells stimulated by immobilized monoclonal antibodies to the CD3 molecular complex (64.1 and OKT3) to induce and regulate B cell responsiveness was examined. T4 cells stimulated by low concentrations of immobilized 64.1 (3.0 ng/well) and all concentrations of immobilized OKT3 supported B cell proliferation and differentiation. High concentrations of immobilized 64.1 (200 ng/well) failed to stimulate help but rather induced suppression by T4 cells. Suppression was prevented by treating the T4 cells with mitomycin C. Suppression could not be accounted for by deprivation of IL-2. In contrast, induction of suppressor T4 cell activity was closely related to the amount of IL-2 produced by anti-CD3 stimulated T4 cells. Moreover, IL 2 appeared to facilitate the generation of suppressor T4 cell activity. Suppressor cell activity could be generated from unseparated T4 cells as well as from highly purified T4 cell subsets, including Leu 8-, CD45R+, and CD45R- T4 cells, after stimulation with immobilized 64.1. A primary action of suppressor T4 cells appeared to be the direct inhibition of B cell function, as evidenced by the finding that immobilized anti-CD3 activated T4 cells directly suppressed B cell responses stimulated by Staphylococcus aureus and IL-2. Anti-CD3 activated T4 cells did not inhibit initial B cell activation, but suppressed the capacity of the activated B cells to differentiate into ISC. The suppressive influence of anti-CD3 activated T4 cells was reversible as evidenced by the finding that removal of the activated T4 cells from the culture permitted B cell differentiation to proceed. Moreover, anti-CD3-activated T4 cells were able to stimulate initial B cell activation that became apparent when the T cells and B cells were separated. Inhibition of B cell responsiveness by 64.1-activated T4 cells was the result of a block at the G1-S interphase of the cell cycle. The data indicate that anti-CD3-stimulated T4 cells directly and reversibly suppress human B cell function. Moreover, IL 2 appears to play an important role in the differentiation of functionally effective suppressor cells from activated T4 cells.  相似文献   

5.
6.
Designing a chimeric protein and developing a procedure for its stable production as a biologically active protein, are key steps in its potential application to clinical trails. IL2-Caspase3 chimeric protein designed to target activated T lymphocytes was found to be a promising molecule for targeted treatment, however was found to be difficult to produce as a biological active molecule. Thus, we designed a new version of the molecule, IL2-Caspase3s, in which six amino acids (aa 29-34) from the N-terminus of the large subunit of caspase 3 were excluded. Repeated expressions, productions, and partial purifications of the IL2-Caspase3s yielded reproducible batches with consistent results. We found that IL2-Caspase3s causes cell death in a specific, dose-, and time-dependent manner. Cell death due to IL2-Caspase3s is caused by apoptosis. This improved and biologically stable IL2-Caspase3s chimeric protein may be developed in the future for clinical trails as a promising therapy for several pathologies involving activated T-cells. Moreover, this truncated caspase 3 sequence, lacking the N-terminal six amino acids of its large subunit, may be used in other caspase 3-based chimeric proteins targeted against various human diseases, using the appropriate targeting moiety.  相似文献   

7.
Culture of human dermal fibroblasts within a three-dimensional matrix composed of native type I collagen fibrils is widely used to study the cellular responses to the extracellular matrix. Upon contact with native type I collagen fibrils human skin fibroblasts activate latent 72-kDa type IV collagenase/ gelatinase (MMP-2) to its active 59- and 62-kDa forms. This activation did not occur when cells were cultured on plastic dishes coated with monomeric type I collagen or its denatured form, gelatin. Activation could be inhibited by antibodies against MT1-MMP, by the addition of TIMP-2 and by prevention of MT1-MMP processing. MT1-MMP protein was detected at low levels as active protein in fibroblasts cultured as monolayers. In collagen gel cultures, an increase of the active, 60-kDa MT1-MMP and an additional 63-kDa protein corresponding to inactive MT1-MMP was detected. Incubation of medium containing latent MMP-2 with cell membranes isolated from fibroblasts grown in collagen gels caused activation of the enzyme. Furthermore, regulation of MT1-MMP expression in collagen cultures seems to be mediated by alpha2beta1 integrins. These studies suggest that activation of the proMMP-2 is regulated at the cell surface by a mechanism which is sensitive to cell culture in contact with physiologically relevant matrices and which depends on the ratio of proenzyme and the specific inhibitor TIMP-2.  相似文献   

8.
Interaction of collagen with fibronectin is important for extracellular matrix assembly and regulation of cellular processes. A fibronectin-binding region in collagen was identified using unfolded fragments, but it is not clear if the native protein binds fibronectin with the same primary sequence. A recombinant bacterial collagen is utilized to characterize the sequence requirement for fibronectin binding. Chimeric collagens were generated by inserting the putative fibronectin-binding region from human collagen into the bacterial collagen sequence. Insertion of a sufficient length of human sequence conferred fibronectin affinity. The minimum sequence requirement was identified as a 6-triplet sequence near the unique collagenase cleavage site and was the same in both triple-helix and denatured states. Denaturation of the chimeric collagen increased its affinity for fibronectin, as seen for mammalian collagens. The fibronectin binding recombinant collagen did not contain hydroxyproline, indicating hydroxyproline is not essential for binding. However, its absence may account, in part, for the higher affinity of the native chimeric protein and the lower affinity of the denatured protein compared with type II collagen. Megakaryocytes cultured on chimeric collagen with fibronectin affinity showed improved adhesion and differentiation, suggesting a strategy for generating bioactive materials in biomedical applications.  相似文献   

9.
Dale M  Nicklin MJ 《Genomics》1999,57(1):177-179
The family of interleukin-1 receptor-like genes currently has six known members. We have constructed a contig of 10 overlapping human PAC clones that covers 530 kb and includes five of the six family members. The termini of the contig were mapped to the interval between D2S373 and D2S176 (chromosome 2q12) by radiation hybrid mapping. The contig contains the genes (cen --> tel), in the order given, for the type II interleukin-1 (IL-1) receptor (IL1R2), the type I IL-1 receptor (IL1R1), the IL-1 receptor-related protein 2 (IL1RL2), T1/ST2/fit-1 (IL1RL1), and the IL-1 receptor-related protein 1, which has recently been shown to be a component of the IL-18 receptor (IL18R1). We show that all the genes are transcribed in the same direction, with IL1R2 being transcribed toward the cluster. The only known family member that is absent from the human contig is the IL-1 receptor accessory protein gene (IL1RAP), which maps to 3q28.  相似文献   

10.
During the past few years many chimeric proteins have been developed to target and kill cells expressing specific surface molecules. Generally, these molecules carry a bacterial or plant toxin that destroys the unwanted cells. The major obstacle in the clinical application of such chimeras is their immunogenicity and non-specific toxicity. We have developed a new generation of chimeric proteins, taking advantage of apoptosis-inducing proteins, such as the human Bax protein, as novel killing components. The first prototype chimeric protein, IL2-Bax, directed toward IL2R-expressing cells, was constructed, expressed in Escherichia coli and partially purified. IL2-Bax increased the population of apoptotic cells in a variety of target T cell lines, as well as in human fresh PHA-activated lymphocytes, in a dose-dependent manner and had no effect on cells lacking IL2R expression. The IL2-Bax chimera represents an innovative approach for constructing chimeric proteins comprising a molecule that binds a specific cell type and an apoptosis-inducing protein. Such new chimeric proteins could be used for targeted treatment of human diseases.  相似文献   

11.
The frequency of human T4 cells induced to grow and produce IL2 in response to the anti-CD3 mAb, 64.1, was examined. T4 cells were cultured at limiting dilution and stimulated with either soluble or immobilized 64.1 in the presence of various cytokines and/or irradiated B lymphoblastoid cells as accessory cells (AC). The frequency of responding cells was assessed by examining wells microscopically for visible growth and supernatants for IL2. Immobilized, but not soluble, 64.1 was able to induce T4 cells to grow in the complete absence of AC, but only when exogenous cytokines were present. IL2 was most effective at supporting T4 cell growth in this system, with a mean of 26.0 +/- 3.8% of immobilized 64.1-activated T4 cells generating a colony in cultures supplemented with IL2. IL4 could also support the growth of immobilized 64.1-activated T4 cells, but the frequency of responding cells was much lower (3.7 +/- 0.9%). The combination of IL2 and IL4 was not more effective than IL2 alone. TNF alpha, IL1 beta, and IL6 were unable to support T4 cell growth alone, but each increased the frequency of T4 cells responding in the presence of IL2. AC could support the growth of a small number of 64.1-stimulated T4 cells in the absence of exogenous IL2 and enhanced the frequency of T4 cells responding to immobilized 64.1 in the presence of IL2. The percentage of immobilized 64.1-stimulated T4 cells producing IL2 was also examined. Immobilized 64.1 stimulated less than 1.4 in 1000 T4 cells to produce IL2 in the absence of AC and neither IL4 nor TNF alpha enhanced this response. Fixed AC and IL1 beta, on the other hand, caused a small increase in the frequency of immobilized 64.1-activated T4 cells that secreted IL2. The frequency of T4 cells stimulated to produce IL2 by immobilized 64.1 was greatly enhanced by the addition of AC. The data indicate that in the absence of AC, a stimulatory matrix of immobilized 64.1 is sufficient for some T4 cells to be activated to become IL2 or IL4 responsive and for a smaller percentage to secrete IL2. Additional T4 cells require IL1 beta, TNF alpha, IL6, or AC to become IL2 responsive, whereas only IL1 beta and AC can promote IL2 production. In the presence of AC, the amount of cytokine produced endogenously appears to be sufficient to sustain the growth of some T4 cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Suplatast tosilate (IPD-1151T) is an antiallergic agent that suppresses airway eosinophil infiltration in asthma. We investigated the effects of IPD-1151T on proliferative response and cytokine production by human antigen-specific T cell lines. Purified protein derivatives (PPD)-specific T helper 1 (Th1) cell lines and Dermatophagoides farinae (Der f)-specific T helper 2 (Th2) cell lines were established from patients with asthma sensitized with house dust mite. Stimulation of PPD-specific and Der f-specific T cell lines with relevant antigens resulted in production of mostly interferon (IFN)-gamma and of interleukin (IL)-4 and IL-5, respectively. IPD-1151T did not inhibit the proliferative responses of either the Th1 or Th2 cell line to antigens. Although IPD-1151T did not inhibit IFN-gamma production by PPD-specific Th1 cell lines, it did inhibit IL-4 and IL-5 production by antigen-stimulated Der f-specific Th2 cell lines in a dose-dependent manner. IPD-1151T directly inhibited cytokine production by Der f-specific Th2 cell lines stimulated with immobilized anti-CD3 antibodies. Although IPD-1151T did not inhibit the clonal expansion of memory T cells among PBMCs into PPD-specific Th1 and Th2 cell lines, it did inhibit IL-4 and IL-5 production by Der f-specific Th2 cell lines but not IFN-gamma production by PPD-specific Th1 cell lines. These results suggest that IPD-1151T selectively inhibits Th2-type cytokine production.  相似文献   

13.
14.
Asthma is characterized by chronic inflammation of the airway wall with the presence of activated T helper 2 (Th2) lymphocytes. The current study assessed the ability of Th2 cytokines to modulate fibroblast-mediated contraction of collagen gels to determine if Th2 cytokines could contribute to tissue remodeling by altering mesenchymal cell contraction. Human fetal lung fibroblasts, human adult bronchial fibroblasts and human airway smooth muscle cells were cast into native type I collagen gels and allowed to contract in the presence or absence of IL (interleukin)-4, IL-5, IL-10, or IL-13. IL-4 and IL-13 but not IL-5 and IL-10 augmented collagen gel contraction in a concentration-dependent manner. Neither IL-4 nor IL-13 altered fibroblast production of transforming growth factor-beta or fibronectin. Both, however, decreased fibroblast prostaglandin (PG) E(2) release. Decreased PGE(2) release was associated with a decreased expression of cyclooxygenase 1 and 2 protein and mRNA. Indomethacin completely inhibited PGE(2) release and also augmented contraction. IL-4 and IL-13, however, added together with indomethacin further augmented contraction suggesting both a PGE-dependent and a PGE-independent effect. These findings suggest that IL-4 and IL-13 may modulate airway tissue remodeling and, therefore, could play a role in the altered airway connective tissue which characterizes asthma.  相似文献   

15.
A genetic construct was created incorporating gene fragments encoding the H chain V region of the human carcinoma specific antibody L6, the CH1 domain of human IgG1, a linker region, and human IL-2. This construct was cotransfected with a chimeric L6 L chain construct into the murine myeloma cell line Ag8.653 for expression. First round clones produced the fusion protein at an estimated 5 to 10 micrograms/ml based on idiotypic reactivity. Dual binding activity was demonstrated through specific interaction with the L6 Ag on human tumor cells and the IL-2R on activated human T cells. The IL-2 portion of the molecule was shown to support the growth of the IL-2-dependent T cell line CTLL2, and the qualitative nature of the IL-2 signal was found to be the same as rIL-2 with respect to induction of tyrosine-phosphorylation of intracellular protein substrates. Tumor cells coated with the fusion protein were shown to cause T cell proliferation and the presence of the fusion protein was found to enhance cell-mediated destruction of human tumor cells.  相似文献   

16.
The ST2 gene is a member of the IL-1 receptor family and is hypothesized to be involved in helper T cell function, but its functional ligand and physiological role remain unknown. We have cloned the human ST2L cDNA that encodes a distinct type of membrane-bound ST2 protein. The predicted 556-amino-acid sequence showed 67% identity to the mouse ST2L protein. The human ST2 gene (IL1RL1) contains 13 exons and spans 40 kb in length. Its exon-intron organization was elucidated from a registered human genomic sequence derived from chromosome 2q, which contains three other genes belonging to the IL-1 receptor family in an approximately 202-kb genomic region. The tissue distribution of ST2 expression was examined by RT-PCR, and the soluble form (ST2, IL1RL1-a) and ST2L (IL1RL1-b) appear to be expressed differentially. We also established stable transfectants of a human glioblastoma cell line, T98G, that express human ST2L constitutively, and we confirmed cell-surface expression of human ST2L protein on the transfectants.  相似文献   

17.
Activation of human monocytes results in the production of interstitial collagenase through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. Inasmuch as interleukin 4 (IL-4) has been shown to inhibit PGE2 synthesis by monocytes, we examined the effect of IL-4 on the production of human monocyte interstitial collagenase. Additionally, we also assessed the effect of IL-4 on the production of 92-kDa type IV collagenase/gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) by monocytes. The inhibition of PGE2 synthesis by IL-4 resulted in decreased interstitial collagenase protein and activity that could be restored by exogenous PGE2 or dibutyryl cyclic AMP (Bt2cAMP). IL-4 also suppressed ConA-stimulated 92-kDa type IV collagenase/gelatinase protein and zymogram enzyme activity that could be reversed by exogenous PGE2 or Bt2cAMP. Moreover, indomethacin suppressed the ConA-induced production of 92-kDa type IV collagenase/gelatinase. These data demonstrate that, like monocyte interstitial collagenase, the conA-inducible monocyte 92-kDa type IV collagenase/gelatinase is regulated through a PGE2-mediated cAMP-dependent pathway. In contrast to ConA stimulation, unstimulated monocytes released low levels of 92-kDa type IV collagenase/gelatinase that were not affected by IL-4, PGE2, or Bt2cAMP, indicating that basal production of this enzyme is PGE2-cAMP independent. IL-4 inhibition of both collagenases was not a result of increased TIMP expression since Western analysis of 28.5-kDa TIMP-1 revealed that IL-4 did not alter the increased TIMP-1 protein in response to ConA. These data indicate that IL-4 may function in natural host regulation of connective tissue damage by monocytes.  相似文献   

18.
19.
Utilizing a sensitive and selective assay for IL-4, it was shown that lymph node T cells from naive mice could produce small amounts of this lymphokine in response to anti-CD3 antibodies adsorbed to culture dishes. The capacity of these cells to produce IL-4 in response to plate-bound anti-CD3 was substantially enhanced by the addition of IL-2 to the culture and was strikingly inhibited by monoclonal anti-IL-2 antibody. Thus, IL-2 appears to be essential for IL-4 production by anti-CD3 antibody-stimulated T cells from naive mice. The effect of IL-2 was not mediated either by preferential proliferation or survival of precursors of IL-4 producing cells, indicating that IL-2 regulates T cell production of IL-4. IL-4 producing capacity of T cells from naive mice was found mainly among CD4+ T cells. Large T cells produced much more IL-4, on a per cell basis, than did small T cells. In contrast, small T cells appeared to be equal or superior to large T cells in producing IL-2. The superiority of large T cells in IL-4-producing capacity was not accounted for by a lack of an accessory cell population from the small T cells as addition of large spleen cells depleted of both B and T cells did not enhance IL-4 production by small lymph node T cells. These results suggest that the bulk of IL-4 production by T cell populations, from normal mice, in response to anti-CD3 depends upon cells that are already activated and that IL-2 is required for such production.  相似文献   

20.
Although interferon-alpha (IFN-alpha) has been found to be involved in the immune regulation in vivo, the effects of IFN-alpha on human B cells have not yet been clarified because of conflicting results in the literature. The present study therefore examined the effects of several subtypes of IFN-alpha (natural, alpha 1, alpha 2a, alpha 2b) on B cell responsiveness in detail by comparing different experimental conditions. Highly purified B cells from normal human individuals were cultured with Staphylococcus aureus (SA) + IL-2 or with immobilized anti-CD3-activated T4 cells in the presence or absence of IFN-alpha. IFN-alpha enhanced the immunoglobulin (Ig) production induced by immobilized anti-CD3-activated T4 cells. By contrast, IFN-alpha (5-50,000 IU/ml) suppressed the Ig production induced by SA + IL-2. The suppression by IFN-alpha was dependent on the concentration of SA. The inhibitory effects of IFN-alpha in SA-stimulated cultures were exerted in the first 72 hr of cultures and required the presence of IL-2, whereas IFN-alpha enhanced the maturation of B cells when it was added after 72 hr of cultures. The suppressive effects of IFN-alpha were overcome by addition of immobilized anti-CD3-preactivated T cells that had been treated with mitomycin C, but not by the addition of fresh T cells or soluble factors produced by activated T cells. Of interest, IFN-alpha did not inhibit the expression of IL-2R, but inhibited that of intercellular adhesion molecule-1 (ICAM-1) on B cells after stimulation with SA + IL-2, suggesting that the suppressive effects of IFN-alpha might be related to the regulation of B cell-B cell contacts through ICAM-1. There was no significant difference in effects on B cells among various subtypes of IFN-alpha. These results suggest that the effects of IFN-alpha on human B cell responsiveness may be different depending on the nature of stimulation. Moreover, the data indicate that IFN-alpha enhances the differentiation of activated B cells irrespective of the activation signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号