首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune insulin-dependent diabetes mellitus and serves as a model for human type I diabetes. NOD spleen cells proliferate to a lesser extent than those from C57BL/6 and BALB/c mice in response to anti-CD3. To investigate the cause of this reduced T cell proliferation, costimulatory molecule expression was investigated. It was found that NOD macrophages, dendritic cells, and T cells, but not B cells, expressed lower basal levels of CD86, but not CD80, CD28, or CD40, compared with C57BL/6 and BALB/c. This low CD86 expression was not dependent on the MHC haplotype or on diabetes development since the NOD-related, diabetes-free mouse strains NON (H-2nb1) and NOR (H-2g7) exhibited similar low levels of CD86 expression and proliferation. Furthermore, following activation, the relative up-regulation of CTLA-4, as compared with CD28, was more pronounced on C57BL/6 and BALB/c T cells as shown by an increased CTLA-4/CD28 ratio. This activation-induced increase in the CTLA-4/CD28 ratio was markedly reduced on NOD T cells compared with the other two strains. The low CD86 expression in NOD mice may account for the reduced increase in both proliferation and the CTLA-4/CD28 ratio, since reducing CD86 expression in C57BL/6 and BALB/c cultures to NOD levels significantly reduces the proliferation and the CTLA-4/CD28 ratio. Therefore, we propose that a low level of CD86 expression in the NOD mouse contributes to a defective regulation of autoreactive T cells by preventing the full activation of T cells and therefore the up-regulation of CTLA-4.  相似文献   

3.
We previously found that ingestion of an extract of Ninjin-to (NJT; Ren-Shen-Tang) suppressed the development of autoimmune diabetes in C57BL/KsJ mice induced by multiple low doses of streptozotocin. To verify this effects on spontaneous autoimmune diabetes, the effects of NJT on NOD mice were investigated in the present study. NJT, provided in drinking water (0.25%, 450 mg/kg/day) from 6 weeks of age, significantly prevented the incidence of spontaneous diabetes in female NOD mice at 30 weeks of age (2/10) compared with that of the controls (7/10), with no effects on body growth or food intake. Even in non-diabetic mice, the blood glucose levels of the NOD controls gradually increased with age, while such increase in NJT-treated mice was significantly suppressed by preventing any deficiency of glucose tolerance. NJT also significantly suppressed the progression of insulitis, which causes insulin deficiency and diabetes. It is well known that NOD mice develop insulitis and diabetes because of their Th1-dominant autoimmune response. IFN-gamma production from splenic T lymphocytes stimulated with anti-CD3 monoclonal antibodies was increased, whereas IL-4 production was decreased in NOD controls compared to age- and sex-matched normal ICR mice. NJT-treatment reduced these deviations of cytokine production in NOD mice. These data all suggest that NJT can prevent spontaneous insulitis and diabetes by the modification of deviated cytokine production in NOD mice.  相似文献   

4.
The NOD mouse is a recognized model for studying immunologically mediated insulin-dependent diabetes mellitus (IDDM). In most colonies, the disease appears with a greater preponderance in females than in males and castration alters the expression of the disease. The prevalence of diabetes may also vary depending upon environmental factors such as stress. Therefore, we measured in the NOD mouse serum glucocorticoid concentrations in basal and stress conditions. We observed in NOD as well as in C57BL/6 mice, taken as controls, a circadian rhythm of corticosterone, with females having higher values than males. After a single restraint stress, female and male NOD mice exhibit a comparable response, whereas after repeated stress, males respond significantly less than females, suggesting an adaptation phenomenon. In contrast, there is no difference in the pattern of corticosterone response of C57BL/6 females and males to both types of stress, but females always respond better than males. Moreover, whatever the stress considered, NOD mice generally exhibit a higher corticosterone response than C57BL/6 mice. The sexual dimorphism in diabetes expression in NOD mice may be related to the levels of corticosterone, a hyperglycemic hormone, in both basal and stress conditions. However, the understanding of corticosteroid effects in this model of type I IDDM is rather complex given their well known anti-inflammatory and immunosuppressive effects in other models of autoimmune diseases.  相似文献   

5.
Rotaviruses are implicated as a viral trigger for the acceleration of type 1 diabetes in children. Infection of adult non-obese diabetic (NOD) mice with rotavirus strain RRV accelerates diabetes development, whereas RRV infection in infant NOD mice delays diabetes onset. In this study of infant mice, RRV titers and lymphocyte populations in the intestine, mesenteric lymph nodes (MLN) and thymus of NOD mice were compared with those in diabetes-resistant BALB/c and C57BL/6 mice. Enhanced intestinal RRV infection occurred in NOD mice compared with the other mouse strains. This was associated with increases in the frequency of CD8αβ TCRαβ intraepithelial lymphocytes, and their PD-L1 expression. Virus spread to the MLN and T cell numbers there also were greatest in NOD mice. Thymic RRV infection is shown here in all mouse strains, often in combination with alterations in T cell ontogeny. Infection lowered thymocyte numbers in infant NOD and C57BL/6 mice, whereas thymocyte production was unaltered overall in infant BALB/c mice. In the NOD mouse thymus, effector CD4+ T cell numbers were reduced by infection, whereas regulatory T cell numbers were maintained. It is proposed that maintenance of thymic regulatory T cell numbers may contribute to the increased suppression of inflammatory T cells in response to a strong stimulus observed in pancreatic lymph nodes of adult mice infected as infants. These findings show that rotavirus replication is enhanced in diabetes-prone mice, and provide evidence that thymic T cell alterations may contribute to the delayed diabetes onset following RRV infection.  相似文献   

6.
7.
Nuclear protein antigens to the antinuclear antibodies in serum of non-obese diabetic (NOD) mice were investigated. In the serum of diabetic NOD female mice (20 weeks old), the antinuclear antibodies were detected by indirect immunofluorescence assay using frozen sections of liver of C 57 BL/6 J or NOD mice as antigen. Nuclei were separated from the liver of C 57 BL/6 J mice and solubilized. Solubilized nuclear antigens were analyzed by SDS PAGE-Western immunoblotting techniques. Nuclear protein antigens with molecular weights of 26,000, 32,000 and 65,000 showed strongly positive reactions with the antinuclear antibodies in the serum of the NOD mouse.  相似文献   

8.
Linkage analysis and congenic mapping in NOD mice have identified a susceptibility locus for type 1 diabetes, Idd5.1 on mouse chromosome 1, which includes the Ctla4 and Icos genes. Besides type 1 diabetes, numerous autoimmune diseases have been mapped to a syntenic region on human chromosome 2q33. In this study we determined how the costimulatory molecules encoded by these genes contribute to the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). When we compared levels of expression of costimulatory molecules on T cells, we found higher ICOS and lower full-length CTLA-4 expression on activated NOD T cells compared with C57BL/6 (B6) and C57BL/10 (B10) T cells. Using NOD.B10 Idd5 congenic strains, we determined that a 2.1-Mb region controls the observed expression differences of ICOS. Although Idd5.1 congenic mice are resistant to diabetes, we found them more susceptible to myelin oligodendrocyte glycoprotein 35-55-induced EAE compared with NOD mice. Our data demonstrate that higher ICOS expression correlates with more IL-10 production by NOD-derived T cells, and this may be responsible for the less severe EAE in NOD mice compared with Idd5.1 congenic mice. Paradoxically, alleles at the Idd5.1 locus have opposite effects on two autoimmune diseases, diabetes and EAE. This may reflect differential roles for costimulatory pathways in inducing autoimmune responses depending upon the origin (tissue) of the target Ag.  相似文献   

9.
The protein Ras homolog enriched in brain (Rheb) is a Ras-like small GTPase that activates the mechanistic target of rapamycin complex 1 (mTORC1), which promotes cell growth. We previously generated transgenic C57BL/6 mice overexpressing Rheb in β-cells (B6Rheb), which exhibited increased β-cell size and improved glucose tolerance with higher insulin secretion than wild type C57BL/6 mice. The mice also showed resistance to obesity-induced hyperglycemia, a model of type 2 diabetes, and to multiple low-dose-streptozotocin (MLDS)-induced hyperglycemia, a model of type 1 diabetes (T1D). To investigate whether the effects of mTORC1 activation by Rheb in B6Rheb mice would also be evident in NOD mice, a spontaneous autoimmune T1D model, we created two NOD mouse lines overexpressing Rheb in their β-cells (NODRheb; R3 and R20). We verified Rheb overexpression in β-cells, the relative activation of mTORC1 and β-cell enlargement. By 35 weeks of age, diabetes incidence was significantly greater in the R3 line and tended to be greater in the R20 line than in NOD mice. Histological analysis demonstrated that insulitis was significantly accelerated in 12-week-old R3 NODRheb mice compared with NOD mice. Furthermore, serum insulin autoantibody (IAA) expression was significantly higher than that of NOD mice. We also examined whether complete Freund’s adjuvant (CFA) treatment alone or with glucagon-like peptide-1 (GLP-1) analog would reverse the hyperglycemia of NODRheb mice; unexpectedly, almost none achieved normoglycemia. In summary, diabetes progression was significantly accelerated rather than prevented in NODRheb mice. Our results suggest that the β-cell enlargement might merely enhance the autoimmunity of pathogenic T-cells against islets, leading to acceleration of autoimmune diabetes. We conclude that not only enlargement but also regeneration of β-cells in addition to the prevention of β-cell destruction will be required for the ideal therapy of autoimmune T1D.  相似文献   

10.
Most immunological studies that utilize different strains of inbred mice following T. gondii infection fail to compensate for differences in host susceptibility to the size of the parasite innoculum. To address this concern, susceptible C57BL/6 and resistant CBA/J mice were orally infected with either an equivalent 50% lethal dose (LD50) of brain cysts of the 76K strain of T. gondii (15 cysts in C57BL/6, 400 cysts in CBA/J) or the same dose of parasites in each mouse strain. C57BL/6 mice receiving 400 cysts (LD50 of CBA/J mice) died post infection, whereas CBA/J mice that received 15 cysts (LD50 of C57BL/6 mice) survived. Parasite loads in the brains and serum Toxoplasma-specific IgG1 titers of LD50-infected C57BL/6 mice were significantly higher than those in LD50- or 15 cysts-infected CBA/J mice, whereas splenocyte proliferation to Toxoplasma antigen and the percentage of CD8 alpha+ T cells were reduced in LD50-infected C57BL/6 mice. In contrast, serum IgG2a and IgM titers, the percentage of gamma delta T cells and IFN-gamma expression of spleen of LD50-infected CBA/J mice were higher than those of either 15 cysts-infected CBA/J mice or LD50-infected C57BL/6 mice. These observations demonstrate that the immune response between LD50-infected C57BL/6 and CBA/J mice was more prominent when compared to C57BL/6 or CBA/J mice receiving the same parasite inoculum. These observations would suggest that caution must be excersized in the planning and interpretation of data when the size of the parasite inoculum has not been adjusted for mouse strain.  相似文献   

11.
为探讨禁食与非禁食处理对构建2型糖尿病小鼠模型血糖变化的影响,分别以普通饲料和高脂饲料喂养3周龄的C57BL/6J雄性小鼠5周,于第5周末采取禁食与非禁食处理,16 h后分别注射链脲佐菌素(streptozotocin,STZ)100 mg/kg体重或相应体积的柠檬酸缓冲液.于第5周末(禁食前)和注射后3周测定非空腹血糖浓度.普通饲料与高脂饲料注射STZ前禁食组血糖水平均显著升高,达到并超过糖尿病小鼠非空腹血糖成模标准(11mmol/L).高脂饲料注射STZ前非禁食组血糖水平表现为缓慢持续升高,其余各组血糖水平均低于糖尿病小鼠非空腹血糖成模标准.结果 表明,高脂饲料联合STZ诱导2型糖尿病小鼠血糖变化是有效的,但注射STZ前的禁食处理不是必需的;单纯注射STZ同样可以诱导糖尿病小鼠血糖升高,但注射前的禁食处理是必要的.  相似文献   

12.
13.
To study the contribution of beta-cell vulnerability to susceptibility to diabetes, we studied beta-cell vulnerability to a single high dose of streptozotocin (STZ) in an animal model of type 2 diabetes, the NSY mouse, a sister strain of the STZ-sensitive NOD mouse, in comparison with the STZ-resistant C3H mouse. NSY mice were found to be extremely sensitive to STZ. Introgression of a single Chr 11, where STZ-sensitivity was mapped in the NOD mouse, from NSY mice converted STZ-resistant C3H mice to STZ-sensitive. Two nucleotide substitutions were identified in the nucleoredoxin gene, a positional and functional candidate gene for STZ-induced diabetes on Chr 11. These data, together with the co-localization of type 1 (Idd4) and type 2 (Nidd1n) susceptibility genes on Chr 11, suggest that the intrinsic vulnerability of pancreatic beta cells is determined by a gene or genes on Chr 11, which may also contribute to susceptibility to spontaneous diabetes.  相似文献   

14.
The regulatory function of invariant NKT (iNKT) cells for tolerance induction and prevention of autoimmunity is linked to a specific cytokine profile that comprises the secretion of type 2 cytokines like IL-4 and IL-10 (NKT2 cytokine profile). The mechanism responsible for iNKT cell differentiation toward a type 2 phenotype is unknown. Herein we show that costimulatory signals provided by the surface receptor signaling lymphocytic activation molecule (SLAM) on myeloid dendritic cells (mDC) to iNKT cells is crucial for NKT2 orientation. Additionally, we demonstrate that the impaired acquisition of an NKT2 cytokine phenotype in nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes is due to defective SLAM-induced signals generated by NOD mDC. Mature mDC of C57BL/6 mice express SLAM and induce C57BL/6 or NOD iNKT cells to acquire a predominant NKT2 cytokine phenotype in response to antigenic stimulation with the iNKT cell-specific Ag, the alpha-galactosylceramide. In contrast, mature NOD mDC express significantly lower levels of SLAM and are unable to promote GATA-3 (the SLAM-induced intracellular signal) up-regulation and IL-4/IL-10 production in iNKT cells from NOD or C57BL/6 mice. NOD mice carry a genetic defect of the Slamf1 gene that is associated with reduced SLAM expression on double-positive thymocytes and altered iNKT cell development in the thymus. Our data suggest that the genetic Slamf1 defect in NOD mice also affects SLAM expression on other immune cells such as the mDC, thus critically impairing the peripheral differentiation of iNKT cells toward a regulatory NKT2 type.  相似文献   

15.
We devised a real-time RT-PCR method for the quantification of preproinsulin 1 and 2, proglucagon, prosomatostatin, and GAD 65 and 67 mRNAs in the thymus, using specific primers and internal probes. Corresponding standard cRNA synthesis and normalization to 18S ribosomal RNA allowed direct quantification. Then, during the first month of life, the expression of each substance of interest was measured in the thymus of NOD mice (a spontaneous model of type 1 diabetes), C57BL/6, BALB/c and lymphocyte-deficient mice (NODscid, NODrag, BALB/cscid and C57BL/6rag). In all mouse thymuses, preproinsulin 1 and GAD 65 were undetectable, preproinsulin 2 and proglucagon showed low expression, whereas that of GAD 67 and somatostatin were high. In 7-day-old mice, GAD 67 and prosomatostatin thymic expressions were lower in NOD than in C57BL/6, and at the same age, the scid mutation but not the rag mutation induced higher expression of all investigated genes compared to control mice. In conclusion, our data allowed the quantification of the expression of pancreatic factors in the mouse thymus. Investigations are underway to quantify, at the cellular level, i.e., in thymic dendritic/macrophage cells, the RNA expression of potential autoantigens, such as preproinsulin 2 and GAD 67.  相似文献   

16.
Heat shock protein 60 (hsp60) is a target antigen in autoimmune diabetes and injections of human hsp60 for tolerance induction were found to protect non-obese diabetic (NOD) mice, an animal model of human type 1 diabetes, from disease development. We tested whether innate immune cells of NOD mice exhibit an abnormal response to extracellular hsp60. Bone marrow derived macrophages (BMM) were grown from NOD, C57BL/6J, non-obese non-diabetic (NON) mice, and NOD-related congenic variants differing in the Idd-3, Idd-10/18, or major histocompatibility complex (MHC) region. Hsp60-stimulated BMM of NOD mice were found to produce high levels of interleukin (IL)-12(p70). The addition of IL-10 downregulated, whereas cyclooxygenase inhibitors elevated, IL-12(p70) production of activated BMM. BMM of NON, NON-NOD-H-2(g7) as well as of NOD-NON-H-2(nbl) mice produced significantly less IL-12(p70) than BMM of NOD mice, indicating that an interaction between the MHC haplotype and non-MHC genes of the NOD mouse is required for hyperresponsiveness to hsp60.  相似文献   

17.
Altered metabolism proceeding seroconversion in children progressing to Type 1 diabetes has previously been demonstrated. We tested the hypothesis that non-obese diabetic (NOD) mice show a similarly altered metabolic profile compared to C57BL/6 mice. Blood samples from NOD and C57BL/6 female mice was collected at 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 and 15 weeks and the metabolite content was analyzed using GC-MS. Based on the data of 89 identified metabolites OPLS-DA analysis was employed to determine the most discriminative metabolites. In silico analysis of potential involved metabolic enzymes was performed using the dbSNP data base. Already at 0 weeks NOD mice displayed a unique metabolic signature compared to C57BL/6. A shift in the metabolism was observed for both strains the first weeks of life, a pattern that stabilized after 5 weeks of age. Multivariate analysis revealed the most discriminative metabolites, which included inosine and glutamic acid. In silico analysis of the genes in the involved metabolic pathways revealed several SNPs in either regulatory or coding regions, some in previously defined insulin dependent diabetes (Idd) regions. Our result shows that NOD mice display an altered metabolic profile that is partly resembling the previously observation made in children progressing to Type 1 diabetes. The level of glutamic acid was one of the most discriminative metabolites in addition to several metabolites in the TCA cycle and nucleic acid components. The in silico analysis indicated that the genes responsible for this reside within previously defined Idd regions.  相似文献   

18.
The nonobese diabetic (NOD) mouse is a useful model of autoimmune type 1 diabetes exhibiting many similarities to human type 1 diabetes patients including the presence of auto-reactive T cells and pancreas-specific autoantiboies. Multiple Idd loci control the development of diabetes in NOD mice. CD72, a B cell membrane-bound glycoprotein carrying a C-type lectin-like domain, is an inhibitory co-receptor of the B cell antigen receptor (BCR) that negatively regulates BCR signaling. Among four known haplotypes of mouse CD72, NOD mice carry the CD72c haplotype, whereas most of the other inbred strains of mice carry either CD72a or CD72b. In this study, we generated congenic NOD.CD72b mice that carry C57BL/6 (B6) mouse-derived centromeric chromosome 4 interval (24-45 cM) surrounding the CD72b locus. Unexpectedly, NOD.CD72b mice were not protected from diabetes, but rather exhibited accelerated development of both insulitis and diabetes. Our result defines novel locus or loci in the vicinity of CD72 gene that negatively control diabetes, indicating that NOD disease is under complex genetic controls of not only Idd genes but also disease-resistant genes.  相似文献   

19.
The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease.  相似文献   

20.
The impact of exposure to lead on gut cytokine gene expression and oral tolerance was analyzed. Oral tolerization with ovalbumin (OVA) increased levels of IL-10 and TGF-beta in gut tissue while IFN-gamma mRNA levels remained unchanged in both autoimmune diabetes prone NOD and normal C57BL/6 mice. This shift towards Th2/Th3 type cytokine gene expression was completely abolished by concomitant treatment with PbCl2 (6 x 0.5 mg/kg) in NOD mice while the cytokine balance in C57BL/6 mice was unaffected. Suppression of Th2/Th3 type cytokine expression was associated with a dampened oral tolerance response to OVA as determined by T cell proliferation assays. We conclude that in autoimmunity prone NOD mice environmental toxicants may disturb immune homeostasis by targeting the gut immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号