首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of growth conditions (incubation time, inoculum size, initial pH value) and some nutrient concentrations on the growth and rifamycin B and SV production by free and immobilized cells of Amycolatopsis mediterranei CBS 42 575 was studied. In alginate beads, the immobilized cells behaved like the free cells, but a pronounced difference was observed in antibiotic production and cell growth. The rifamycin production by the immobilized cells was higher than that obtained by the free cells. The immobilized cells were also reused repeatedly for six batch cultivations with a fresh medium charged into flasks at the beginning of each batch. It was found that the immobilized cells were stable, and the rifamycin yield was almost constant during the first three batches and then decreased.  相似文献   

2.
In order to know the effect of supports on cephamycin C production, under similar experimental conditions, S. clavuligerus cells were immobilized with--sponge, 2% agar, 2% and 4% alginate support materials. An experimental set of free cell was also maintained as control. Cephamycin C production by these immobilized and free cells was estimated at 48, 96 and 120 hr of fermentation. In all the cases cephamycin C production was found to be high at 120 hr of fermentation. Sponge was found to be a better support material than other supports used for immobilization.  相似文献   

3.
柠檬酸是利用微生物代谢生产的一种极为重要的有机酸.广泛应用于食品、饮料、化工、冶金、印染等各个领域。在国外,近10年来,利用固定化细胞生产柠檬酸已获得较广泛的研究〔1-6〕,国内也有学者指出,柠檬酸发酵的趋向是利用固定化细胞进行连续化生产⑺。而国内这方面的研究报道很少〔8,9〕。我们利用海藻酸钙凝胶包埋固定化黑曲霉细胞生产柠檬酸.探讨了碳源种类及其浓度对固定化细胞生产柠檬酸的影响。现将结果报道如下。  相似文献   

4.
This study aimed to investigate the relationships between structures of gene carrier molecules and their activities for gene delivery into cells. We compared 2 types of poly(L-lysine) as carriers, that is, dendritic poly(L-lysine) (KG6) and linear poly(L-lysine) (PLL). KG6 formed a neutral DNA complex, and its DNA compaction level was weaker than that of PLL. The amount of DNA binding and uptake into cells mediated by PLL was 4-fold higher than that with KG6. However, KG6-mediated gene expression was 100-fold higher than that by PLL. Since pK(a) values of terminal amines of KG6 were lowered even though small amounts of DNA were internalized into cells, sufficient DNA amounts for effective gene expression escaped to the cytosol due to the proton sponge effect in the endosome. In addition, weakly compacted DNA with KG6 was advantageous in accessing RNA polymerase in the cell nucleus. On the other hand, PLL did not show the proton sponge effect in the endosome and resulted in strong compaction of DNA. Even though large DNA amounts were internalized into cells, most of the DNA would not take part in gene expression systems in the nucleus. Amount of induced cytokine production after intravenous injection of DNA complexes with KG6 and PLL was low, and was similar to the case when DNA was injected alone. Therefore, no significant difference in effects on cytokine production was observed between KG6 and PLL.  相似文献   

5.
Summary Free and immobilized cells ofC. glutamicum were analyzed for production of L-lysine. Non-growing free cells as well as immobilized ones produced higher levels of lysine than growing free cells, when cultured for 24 h in a medium containing 80 g/L glucose as a carbon source. The effect of initial biomass and yeast extract concentrations was investigated in order to improve lysine production.  相似文献   

6.
Alpha-amylase has a wide range of applications in starch industries, i.e. baking, brewing, distillery, etc. The alpha-amylase production from Streptomyces erumpens MTCC 7317 immobilized cells was compared with that of free cells. The immobilized cells of S. erumpens in calcium alginate beads were more effective for production of alpha-amylase (12.2% more yield) than free cells. Response surface methodology (RSM) was used to evaluate the effect of main variables, i.e. incubation period, pH and temperature on enzyme production with immobilized cells. A full factorial Central Composite Design (CCD) was applied to study these main factors that affected alpha-amylase production. The experimental results showed that the optimum incubation period, pH and temperature were 36 h, 6.0 and 50 degrees C, respectively for immobilized cells. Repeated batch fermentation of immobilized cells in shake flasks carried out in starch-beef extract medium showed that S. erumpens cells were physiologically active on the support even after four cycles of fermentation.  相似文献   

7.
固定化光合细菌利用有机物产氢的研究   总被引:9,自引:1,他引:9  
应用固定化细胞技术包埋荚膜红假单胞菌(Rhodopseudomonas capsulata)菌株386.研究在光照下利用有机物产氢的特性。实验观察到,光照培养120小时,悬浮培养物的产氢量为68.2ml·比产氢速率为104.1ml H2/g(生物量)·h;用琼脂包埋后.其产氢能力得到改善,产氢量和比产氢速率分别达到128.4ml和l 9s.8mlH2/g·h。该菌株除可利用苹果酸外,还可利用葡萄糖、乳酸、丙酸等基质高效地产氢。基质浓度只有控制在适当水平时,才具有较高的基质转化产氢效率。此外.菌体生物量、菌龄、培养液pH、光照强度、光照/黑暗时间比以及温度对产氢过程均有不同程度的影响。  相似文献   

8.
Summary The contribution of immobilized cells and free cells released from gel beads to ethanol production by the salt-tolerant yeastsZygosaccharomyces rouxii andCandida versatilis, and 4-ethylguaiacol (4-EG) production byC. versatilis were investigated using an airlift reactor. The amounts of ethanol produced by free cells were about 65% and about 90% of total ethanol in the reactor forZ. rouxii andC. versatilis, respectively. It was found that immobilized cells gave a much lower specific productivity of ethanol (ethanol production per hour per cell) than free cells of both yeasts, especially ofC. versatilis. 4-EG was produced mainly by immobilized cells ofC. versatilis; the amount of 4-EG produced by free cells was about 20% of the total 4-EG, in contrast to the results of ethanol production. However, the specific productivity of 4-EG (4-EG production per hour per cell) by immobilized and free cells was fairly similar.  相似文献   

9.
Cells of Leuconostoc mesenteroides immobilized in calcium alginate beads were used to produce dextransucrase (DS) in three sequential cycles of semicontinuous fed-batch fermentations. Each cycle consisted of a fed-batch DS production period of 24 h followed by a batch dextran production period for another 24 h. Free, suspended cells were used in only one cycle of fed-batch DS production followed by a dextran production period. It was impractically tedious to separate and reuse free cells. Increasing sucrose feed rate from 5 to 10 g/L h led to increases of the total enzymatic activity by about 88% with immobilized cells and by about 100% with free cells. In DS fed-batch semicontinuous fermentation, total enzymatic activity produced by immobilized cells was 1.35 and 1.56 times greater than that produced by free cells with respective sucrose feeding rates of 10 and 5 g/L h. These increases in enzyme productivity with immobilized cells, however, required total overall operating times three times longer (three cycles) than with free cells (one cycle). Growing the microorganism at optimum conditions for DS production also increased the dextran yield and shortened the time of conversion of sucrose to dextran, regardless of whether the cells were free or immobilized. Moreover, during three cycles of semicontinuous operation (144 h) immobilized cells produced more than three times as much dextran as free cells during one cycle (24 h).  相似文献   

10.
Pseudomonas putida MTCC 6809, a plant growth promoting rhizobacteria producing amidase was isolated from the rhizosphere of Pisum sativum. The cells were immobilized in sodium alginate for the production of amidase and the effect of dehydration on immobilized beads were studied. Optimization of process parameters for amidase production was carried out to enhance enzyme production using immobilized cells. From the results it is clear that 2% and 3% (w/v) of alginate were suitable for amidase production with 12.8 and 13 U/ml activity, respectively after 36 h of incubation. Among the various substrates studied acetamide (2% w/v) was a good inducer of amidase. It was observed that immobilized catalysts could be recycled up to five batches. Amidase production was observed in both free and immobilized cells, nevertheless immobilization is much favored in comparison to free cells, as it leads to reusability of beads, lesser contamination, consistent amidase production and adaptability to wide range of culture conditions. The relative enzyme activity with the dehydrated beads was only 27% in comparison to hydrated beads, it is possible to pack considerably more into a fixed volume as the relative volume of dehydrated beads is 20%. Even though consistent amidase production was difficult to achieve using dehydrated beads, which may have certain advantages like less chances for microbial contamination and easy to transport.  相似文献   

11.
Summary Mycelia of Claviceps purpurea CBS 164.59 were immobilized in 2%, 4%, and 8% calcium alginate. Alkaloid production by free cells declined after 60 days, while immobilized cells retained their activity for 200 days. The cumulative alkaloid production for all fermentation cycles using 8% calcium alginate immobilized mycelia was 25 times higher than that from free cells. The best yields of the ergopeptide ergometrine were reached with 4% gel immobilized mycelia, while higher gel concentrations caused a shift in the alkaloid biosynthesis towards high clavine alkaloid production.Beginning with the third cycle of reincubation the immobilized mycelia showed a marked tendency to fragmentize into vacuolated arthrosporoid-like structures and produced violet-black pigments so that the beads recalled sclerotial structures of parasitically living Claviceps.Dedicated to Prof. Dr. K. Esser to his 60th birthday  相似文献   

12.
Summary Cephalosporium acremonium cells were immobilized in calcium alginate beads. Immobilized cells were used to produce -lactam antibiotics in rest medium under various oxygen concentrations, and the results were compared with free cell performance. Cell growth rate of immobilized cells was 35% of the growth rate of free cells. -Lactam antibiotic production rate of immobilized cells was also limited by mass transfer of oxygen. -Lactam antibiotic production rate of immobilized cells was 70% of that of free cells at oxygen saturation condition (i.e., 0.27 mM O2). Specific antibiotic production of immobilized cells was about 200% of that of free cells at 0.27 mM O2.  相似文献   

13.
The production of gibberellins and bikaverin by immobilized and free cells of Gibberella fujikuroi strains was followed. Both types of cells, free and immobilized, produced similar titers of the secondary metabolites during the normal growth cycle. The kinetics of nutrient use and product formation by the immobilized cells lagged behind that of the free cells and this was assumed to be the result of diffusional limitations imposed on the immobilized cells. A noticeable difference was that in the immobilized cells, all of the bikaverin was excreted into the medium for both strains of G. fujikuroi tested but in the free cell fermentation 44% was excreted for strain ACC 917 and only 10% for strain GF1a. Gibberellin and bikaverin could be produced in a semi-continuous fashion with both free and immobilized cells for a period of 16 d in a resuspension medium containing 0.12 mM or 0.60 mM ammonium chloride. No definite advantage, on a productivity basis, for using immobilized cells over free cells could be seen.  相似文献   

14.
The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.  相似文献   

15.
Jung ES  Kim HJ  Oh DK 《Biotechnology progress》2005,21(4):1335-1340
Using immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant (Gali 152), we found that the galactose isomerization reaction was maximal at 70 degrees C and pH 7.0. Manganese ion enhanced galactose isomerization to tagatose. The immobilized cells were most stable at 60 degrees C and pH 7.0. The cell and substrate concentrations and dilution rate were optimal at 34 g/L, 300 g/L, and 0.05 h(-1), respectively. Under the optimum conditions, the immobilized cell reactor with Mn2+ produced an average of 59 g/L tagatose with a productivity of 2.9 g/L.h and a conversion yield of 19.5% for the first 20 days. The operational stability of immobilized cells with Mn2+ was demonstrated, and their half-life for tagatose production was 34 days. Tagatose production was compared for free and immobilized enzymes and free and immobilized cells using the same mass of cells. Immobilized cells produced the highest tagatose concentration, indicating that cell immobilization was more efficient for tagatose production than enzyme immobilization.  相似文献   

16.
The free and agar immobilized cells of Nocardia globerula NHB-2 having nitrilase (EC 3.5.5.1) activity were used to catalyse the transformation of benzonitrile to benzoic acid. The whole cells of N. globerula NHB-2 were immobilized in agar which exhibited maximum conversion of benzonitrile to benzoic acid in 0.1 M potassium phosphate buffer pH 7.5 (free cells) 8.0 (immobilized cells), temperature 40 degrees C, cells 2 mg dcm ml(-1) reaction mixture and benzonitrile (4% v/v) in 4 h (free cells). The effect of temperature on the stability of nitrilase was studied and cells retained 100% activity at 30 degrees C and lost 50% activity at 40 degrees C. In a fed batch mode of reaction 108 and 84 gl(-1) benzoic acid was produced using free and agar entrapped cells (2 g dcm). The agar immobilized cells were recycled up to three times and 80, 62, 20 gl(-1) benzoic acid was again produced respectively in each of three cycles and a total 244 g benzoic acid was produced by recycling the same mass of immobilized biocatalyst.  相似文献   

17.
The semicontinuous production of red pigment by immobilized cells ofBacillus sp. BH-99 was investigated in comparison with free cells. The red pigment produced highest productivity under the conditions of aeration of 0.2 mL/min and 2 mm diameter of gel beads by using 3.0% sodium alginate. Semicontinuous production by immobilized cells showed the highest productivity with replacement of fresh production medium in every 72 h for fourth fermentation cycle following the conditions of red pigment productivity.  相似文献   

18.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
This paper investigates the effects of the oxygenation level on the performance of d-xylose alcoholic fermentation by free- and immobilized-cell batch cultures of Candida shehatae (ATCC 22984). Yeast cells were immobilized in composite agar layer/microporous membrane structures. Fermentations were performed under varying oxygenation levels corresponding to different O2 flow rates (OFRs). Low OFRs enhanced the fermentation performance of free and immobilized yeasts. The best ethanol yield coefficient, obtained at an OFR of 5 mmol O2 h–1 dm–3 for both culture modes, was slightly higher (0.425 g g–1) for immobilized cultures than for their free counterparts (0.39 g g–1). More sustained aeration inhibited ethanol production by free and immobilized organisms. However, this inhibition was more pronounced for agar-entrapped cultures. Xylitol production of free cultures normally decreased as the OFR increased. At high OFR, however, immobilized organisms surprisingly produced more xylitol than at lower OFR or in anaerobiosis. This effect is discussed by referring to the mass transfer limitations that occur inside the immobilized-cell structures. Gel-entrapped cultures displayed higher specific and volumetric production rates of ethanol and xylitol than free-cell cultures.  相似文献   

20.
Abstract Photoproduction of hydrogen, nitrogenase activity (acetylene reduction) and hydrogenase activity (methylene blue dye reduction) were studied in free and alginate immobilized whole cells of a purple non-sulfur photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Four-fold increase in hydrogen production, two-fold increase in nitrogenase activity and 1.2-fold increase in the hydrogenase activity were observed in immobilized cells compared to free cells. Effect of various inhibitors (CO and C2H2) and electron donor (H2) on the above three functions by free and immobilized cells has also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号