首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Metabolic differentiation of Semitendinosus (ST), Cutaneus trunci (CT) and Masseter (MA) in cattle foetuses aged from 110 to 260 days was studied by measuring isocitrate dehydrogenase (ICDH, oxidative) and lactate dehydrogenase (LDH, glycolytic) activities. The five LDH isoenzymes were separated by electrophoresis and assayed by densitometry. ICDH activity increased from 210 days onwards in the three muscles but more intensively in MA (oxidative). LDH activity increased from 170 days onwards in ST, 180 days onwards in CT and only from 210 days onwards in MA and was higher in the glycolytic muscles (ST and CT). The proportion of the LDH-M subunit increased during foetal life in glycolytic muscles. At 110 days, it was higher in CT, intermediate in ST and lower in MA. These results show that 1) metabolic differentiation of bovine muscle begins during the last third of foetal life and 2) the proportion of the LDH-M subunit seems to be related to the contractile type of adult muscle from the first stages of foetal life.  相似文献   

2.
The total content of myosin heavy chains (MHC) and their isoform pattern were studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (extensor digitorum longus) muscles of adult rat during atrophy after denervation and recovery after self-reinnervation. The pattern of fibre types, in terms of ultrastructure, was studied in parallel. After denervation, total MHC content decreased sooner in the slow-twitch muscle than in the fast-twitch. The ratio of MHC-1 and the MHC-2B isoforms to the MHC-2A isoform decreased in the slow and the fast denervated muscles, respectively. After reinnervation of the slow muscle, the normal pattern of MHC recovered within 10 days and the type 1 isoform increased above the normal. In the reinnervated fast muscle, the 2B/2A isoform ratio continued to decrease. Traces of the embryonic MHC isoform, identified by immunochemistry, were found in both denervated and reinnervated slow and fast muscles. A shift in fibre types was similar to that found in the MHC isoforms. Within 2 months of recovery a tendency to normalization was observed. The results show that (a) MHC-2B isoform and the morphological characteristics of the 2B-type muscle fibres are susceptible to lack of innervation, similar to those of type 1, (b) during muscle recovery induced by reinnervation the MHC isoforms and muscle fibres shift transiently to type 1 in the soleus and to type 2A in the extensor digitorum longus muscles, and (c) the embryonic isoform of MHC may appear in the adult skeletal muscles if innervation is disturbed.  相似文献   

3.
A number of single fibres were isolated by dissection of four bovine masseter (ma) muscles, three rectus abdominis (ra) muscles and eight sternomandibularis (sm) muscles. By histochemical criteria these muscles contain respectively, solely slow fibres (often called type I), predominantly fast fibres (type II), and a mixture of fast and slow. The fibres were analysed by conventional sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the gels stained with Coomassie Blue. Irrespective of the muscle, every fibre could be classed into one of two broad groups based on the mobility of proteins in the range 135000-170000 daltons. When zones containing myosin heavy chain were cut from the single-fibre gel tracks and 'mapped' [Cleveland, Fischer, Kirschner & Laemmli (1977) J. Biol. Chem. 252, 1102-1106] with Staphylococcus proteinase, it was found that one group always contained fast myosin heavy chain, whereas the second group always contained the slow form. Moreover, a relatively fast-migrating alpha-tropomyosin was associated with the fast myosin group and a slow-migrating form with the slow myosin group. All fibres also contained beta-tropomyosin; the coexistence of alpha- and beta-tropomyosin is at variance with evidence that alpha-tropomyosin is restricted to fast fibres [Dhoot & Perry (1979) Nature (London) 278, 714-718]. Fast fibres containing the expected fast light chains and troponins I and C fast were identified in the three ra muscles, but in only four sm muscles. In three other sm muscles, all the fast fibres contained two troponins I and an additional myosin light chain that was more typical of myosin light chain 1 slow. The remaining sm muscle contained a fast fibre type that was similar to the first type, except that its myosin light chain 1 was more typical of the slow polymorph. Troponin T was bimorphic in all fast fibres from a ra muscles and in at least some fast fibres from one sm muscle. Peptide 'mapping' revealed two forms of fast myosin heavy chain distributed among fast fibres. Each form was associated with certain other proteins. Slow myosin heavy chain was unvarying in three slow fibre types identified. Troponin I polymorphs were the principal indicator of slow fibre types. The myofibrillar polymorphs identified presumably contribute to contraction properties, but beyond cud chewing involving ma muscle, nothing is known of the conditions that gave rise to the variable fibre composites in sm and ra muscles.  相似文献   

4.
The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.  相似文献   

5.
Development of muscle fiber specialization in the rat hindlimb   总被引:11,自引:7,他引:4       下载免费PDF全文
The appearance of fast and slow fiber types in the distal hindlimb of the rat was investigated using affinity-purified antibodies specific to adult fast and slow myosins, two-dimensional electrophoresis of myosin light chains, and electron microscope examination of developing muscle cells. As others have noted, muscle histogenesis is not synchronous; rather, a series of muscle fiber generations occurs, each generation forming along the walls of the previous generation. At the onset of myotube formation on the 15th d of gestation, the antimyosin antibodies do not distinguish among fibers. All fibers react strongly with antibody to fast myosin but not with antibody to slow myosin. The initiation of fiber type differentiation can be detected in the 17-d fetus by a gradual increase in the binding of antibody to slow myosin in the primary, but not the secondary, generation myotubes. Moreover, neuromuscular contacts at this crucial time are infrequent, primitive, and restricted predominantly, but not exclusively, to the primary generation cells, the same cells which begin to bind large amounts of antislow myosin at this time. With maturation, the primary generation cells decrease their binding of antifast myosin and become type I fibers. Secondary generation cells are initially all primitive type II fibers. In future fast muscles the secondary generation cells remain type II, while in future slow muscles most of the secondary generation cells eventually change to type I over a prolonged postnatal period. We conclude that the temporal sequence of muscle development is fundamentally important in determining the genetic expression of individual muscle cells.  相似文献   

6.
The aim of the present study was to precise the origin of the particular muscle characteristics of double-muscled cattle by comparing muscle properties of Holstein and double-muscled Belgian Blue (BB) foetuses. Ten 100-day-old foetuses of each genotype were studied. The weight and length of foetuses and the length, weight and area of the Semitendinosus (ST) muscle were analysed. Contractile differentiation of the different fibre types was studied by immunohistochemistry using several monoclonal antibodies raised against different myosin heavy chain isoforms (MHC slow, fast, foetal) and by electrophoresis. Proliferation phase of myoblasts from each genotype was analysed in primary culture. On 100 days of foetal life, the foetuses of both genotypes did not show any significant differences in their weight and length. However, BB cattle already present muscle hypertrophy, which seems to originate from a higher myoblast proliferation observed in primary culture. The use of anti-MHC antibodies shows that ST muscle of BB contained a smaller proportion of primary fibres and a higher proportion of secondary fibres which will give principally fast fibres in adult muscle. Electrophoresis analysis confirms a lower proportion of slow MHC in ST of BB.  相似文献   

7.
The dorsocutaneous (DLD) and anterior (ALD) latissimus dorsii are both homogeneous slow tonic muscles. Autografts of mature DLD were attached onto the ALD of chickens to study regeneration of slow tonic muscle fibres innervated exclusively by slow tonic nerves. Fifty-three grafts were examined from 3 to 231 days after implantation for myosin ATPase, and for heavy chains of fast myosin. New muscle fibres in grafts were initially type 1 (slow) or type 2 (fast twitch). Tonic type 3 fibres were slow to differentiate and were not seen within 59 days. From 105 days many fibres were type 3A and type 1 were no longer apparent. However, type 2 fibres persisted and appeared to be present instead of type 3B fibres even after 8 months.  相似文献   

8.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

9.
In the course of muscle differentiation, changes in fibre-type population and in myosin composition occur. In this work, the expression of native myosin isoforms in developing fast-twitch (posterior latissimus dorsi; PLD) and slow-tonic (anterior latissimus dorsi; ALD) muscles of the chick was examined using electrophoresis under nondissociating conditions. The major isomyosin of 11-day-old embryonic PLD comigrated with the adult fast myosin FM3. Two additional components indistinguishable from adult fast FM2 and FM1 isomyosins appeared successively during the embryonic development. The relative proportion of these latter isoforms increased with age, and the adult pattern was established by the end of the 1st month after hatching. Between day 11 and day 16 of embryonic development, PLD muscle fibres also contained small amounts of slow isomyosins SM1 and SM2. This synthesis of slow isoforms may be related to the presence of slow fibres within the muscle. At all embryonic and posthatch stages, ALD was composed essentially of slow isomyosins that comigrated with the two slow components SM1 and SM2 identified in adult. Several studies have reported that the SM1:SM2 ratio decreases progressively throughout embryonic and posthatching development, SM2 being predominant in the adult. In contrast, we observed a transient increase in SM1:SM2 ratio at the end of embryonic life. This could reflect a transitional neonatal stage in myosin expression. In addition, the presence in trace amounts of fast isomyosins in developing ALD muscle could be related to the presence of a population of fast fibres within this muscle.  相似文献   

10.
The local anaesthetic (Bupivacaine (1-n-butyl-DL-piperidine-2-carboxylic acid-2, 6-dimethyl anilide hydrochloride) has been used to induce myofiber damage (and thus satellite cells proliferation) and thereby represents a tool for increasing the yield of myoblasts from adult muscles. Replicating satellite cells were isolated by enzymatic dissociation from soleus (slow type) and tibialis anterior (fast type) muscles of adult rats, and categorized by the isoform (embryonic, fast and slow) of myosin heavy chain (MHC) expressed following myotube formation in a similar in vitro environment. According to light microscopic criteria, no morphological differences exist between the satellite cell cultures obtained from adult fast and slow muscles after Bupivacaine injection. On the other hand the derived myotubes express, beside the embryonic type, the peculiar myosin heavy chains which characterize the myosin pattern of the donor muscles.  相似文献   

11.
Three adult skeletal muscle sarcomeric myosin heavy chain (MHC) genes have been identified in the rat, suggesting that the expressed native myosin isoforms can be differentiated, in part, on the basis of their MHC composition. This study was undertaken to ascertain whether the five major native isomyosins [3 fast (Fm1, Fm2, Fm3), 1 slow (Sm), and 1 intermediate (Im)], typically expressed in the spectrum of adult rat skeletal muscles comprising the hindlimb, could be further differentiated on the basis of their MHC profiles in addition to their light chain composition. Results show that in muscles comprised exclusively of fast-twitch glycolytic (FG) fibers and consisting of Fm1, Fm2, and Fm3, such as the tensor fasciae latae, only one MHC, designated as fast type IIb, could be resolved. In soleus muscle, comprised of both slow-twitch oxidative and fast-twitch oxidative-glycolytic fibers and expressing Sm and Im, two MHC bands were resolved and designated as slow/cardiac beta-MHC and fast type IIa MHC. In muscles expressing a mixture of all three fiber types and a full complement of isomyosins, as seen in the plantaris, the MHC could be resolved into three bands. Light chain profiles were characterized for each muscle type, as well as for the purified isomyosins. These data suggest that Im (IIa) consists of a mixture of fast and slow light chains, whereas Fm (IIb) and Sm (beta) isoforms consist solely of fast- and slow-type light chains, respectively. Polypeptide mapping of denatured myosin extracted from muscles expressing contrasting isoform phenotypes suggests differences in the MHC primary structure between slow, intermediate, and fast myosin isotypes. These findings demonstrate that 1) Fm, Im, and Sm isoforms are differentiated on the bases of both their heavy and light chain components and 2) each isomyosin is distributed in a characteristic fashion among rat hindlimb skeletal muscles. Furthermore, these data suggest that the ratio of isomyosins in a given muscle or muscle region is of physiological importance to the function of that muscle during muscular activity.  相似文献   

12.
We have utilized a key biochemical determinant of muscle fiber type, myosin isoform expression, to investigate the initial developmental program of future fast and slow skeletal muscle fibers. We examined myosin heavy chain (HC) phenotype from the onset of myogenesis in the limb bud muscle masses of the chick embryo through the differentiation of individual fast and slow muscle masses, as well as in newly formed myotubes generated in adult muscle by weight overload. Myosin HC isoform expression was analyzed by immunofluorescence localization with a battery of anti-myosin antibodies and by electrophoretic separation with SDS-PAGE. Results showed that the initial myosin phenotype in all skeletal muscle cells formed during the embryonic period (until at least 8 days in ovo) consisted of expression of a myosin HC which shares antigenic and electrophoretic migratory properties with ventricular myosin and a distinct myosin HC which shares antigenic and electrophoretic migratory properties with fast skeletal isomyosin. Similar results were observed in newly formed myotubes in adult muscle. Future fast and slow muscle fibers could only be discriminated from each other in developing limb bud muscles by the onset of expression of slow skeletal myosin HC at 6 days in ovo. Slow skeletal myosin HC was expressed only in myotubes which became slow fibers. These findings suggest that the initial commitment of skeletal muscle progenitor cells is to a common skeletal muscle lineage and that commitment to a fiber-specific lineage may not occur until after localization of myogenic cells in appropriate premuscle masses. Thus, the process of localization, or events which occur soon thereafter, may be involved in determining fiber type.  相似文献   

13.
G K Dhoot 《Histochemistry》1992,97(6):479-486
Three monoclonal antibodies (LM5, F2 and F39) to the fast class of myosin heavy chain (MHC) were used to study the effect of denervation on the differentiation of muscle cell types in some rat skeletal muscles. Antibody LM5 in immunocytochemical investigations did not stain any myotubes during early fetal development but presumptive fast muscle cells started to stain during later fetal development. Unlike antibody LM5, antibodies F2 and F39 stained all myotubes during fetal development. The suppression of fast myosin heavy chains recognised in presumptive slow muscle cells was observed within 1-2 days after birth with antibody F39 but not until 10-14 days after birth with antibody F2. The emergence of subsets of fast muscle fibre types in rat extensor digitorum longus (EDL) and tibialis anteri (TA) detectable by F39 and F2 antibodies was not observed until 2-3 weeks after birth. Denervation of developing muscles led to marked changes in the expression of myosins identified by these antibodies.  相似文献   

14.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

15.
Neural regulation of differentiation of rat skeletal muscle cell types   总被引:2,自引:0,他引:2  
Summary Three monoclonal antibodies (LM5, F2 and F39) to the fast class of myosin heavy chain (MHC) were used to study the effect of denervation on the differentiation of muscle cell types in some rat skeletal muscles. Antibody LM5 in immunocytochemical investigations did not stain any myotubes during early fetal development but presumptive fast muscle cells started to stain during later fetal development. Unlike antibody LM5, antibodies F2 and F39 stained all myotubes during fetal development. The suppression of fast myosin heavy chains recognised in presumptive slow muscle cells was observed within 1–2 days after birth with antibody F39 but not until 10–14 days after birth with antibody F2. The emergence of subsets of fast muscle fibre types in rat extensor digitorum longus (EDL) and tibialis anteri (TA) detectable by F39 and F2 antibodies was not observed until 2–3 weeks after birth. Denervation of developing muscles led to marked changes in the expression of myosins identified by these antibodies.  相似文献   

16.
1. Ca2+-ATPase of myosin and electrophoretic pattern of light chains of myosin were investigated in cardiac muscles of 22-day-old rabbit embryos, new-born and adult rabbits. 2. Ca2+-ATPase activity was found to decrease during development and in contrast to that of adult rabbit, cardiac myosin prepared from 22-day-old embryos, is stable on exposure to pH 9.5. 3. Myosin from the cardiac muscle of rabbit embryos reveals light chains of both fast and slow types, that from adult animals, however, reveals light chains of the slow type only. 4. These studies suggest that unlike the cardiac muscle of adult rabbit, cardiac muscle of rabbit embryos contains both fast and slow types of myosin.  相似文献   

17.
Further studies on single fibres of bovine muscles.   总被引:1,自引:1,他引:0  
Young & Davey (1981) (Biochem. J. 195, 317-327) identified numbers of polymorphs of myofibrillar proteins by sodium dodecyl sulphate/polyacrylamide gel electrophoresis of single muscle fibres isolated from three bovine muscles. Fibres were classed according to the distribution of polymorphs. The study has now been extended to eight diverse bovine muscles. The previous distinction made between fast and slow fibres is valid without exception in the extended study. Within these classes, variations in myofibrillar expression are examined within and between fibres, muscles and animals. Two slow muscles are contrasted; masseter is homogeneous in fibre type, whereas diaphragm is subtly heterogeneous, possibly arising from greater physiological demands. Of the myofibrillar polymorphs, attention is concentrated on two variants of fast-muscle myosin heavy chain. Both are present in all fast and mixed muscles examined, except sternomandibularis, and each is respectively associated with certain unidentified proteins. Within a muscle the fast-muscle myosin light-chain expression is the same irrespective of the heavy-chain variant. Histochemical techniques demonstrated that the variants are respectively associated with types IIA and IIB as defined by other investigators.  相似文献   

18.
Three populations of myoblasts, embryonic, foetal and adult, appear sequentially during myogenesis. The present study uses retroviruses to mark myoblasts clones in vivo from these populations. Myoblasts labelled at E15 (embryonic) contributed to primary fibres only. The majority of marked primary fibres were slow but a small number of clones contained marked primaries which were no longer slow at E19. Myoblasts labelled at E17 (foetal) fused with both primary and secondary fibres and most clones contained both fast and slow fibres. Similarly, adult myoblasts marked at P0 fused with all fibre types. These results indicate that embryonic myoblasts are restricted to producing only primary fibres which are initially slow but which can convert to being fast. Clones of foetal and adult myoblasts fuse with both primary and secondary fibres which may be either fast or slow.  相似文献   

19.
Ca2+ATPase activity and light chains of myosin, fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in developing, adult and denervated fast, slow and cardiac muscles of the rat, guinea-pig, cat, rabbit and chick were studied. It has been shown that in normal adult muscles the electrophoretic pattern of light chains of myosin reflects the myosin ATPase activity only when muscles from the same animal species are compared. In homologous muscles from adult animals differing in size, the size-dependent difference in myosin ATPase activity is not revealed in the electrophoretic pattern. Both in developing and in denervated muscle, changes in myosin ATPase activity are either connected with changes in the pattern of light chains of myosin or this pattern does not change. This relation is different in fast and slow muscles and also differs in chick and rabbit muscles. There are several possibilities of explaining the relation between ATPase activity of myosin and the pattern of light chains of myosin. The observation that myosin from the soleus muscle of 1-month-old rabbit contains light chains corresponding to both fast and slow type of myosin, indicates that the change in myosin ATPase activity during development is due to changes in the ratio between the fast and slow type of myosin.  相似文献   

20.
The regeneration of adult rat and mouse slow (soleus) and fast (sternomastoid) muscles was examined after the degeneration of myofibers had been achieved by a snake venom cardiotoxin, under experimental conditions devised to spare as far as possible the satellite cells, the nerves, and the blood vessels of the muscles. Three days after the injury, no myosin was detectable in selected portions of the muscles. New myosins of embryonic, neonatal, and adult types started to be synthesized during the following two days. Adult myosins thus appeared more precociously than in development, which implies that the synthesis of myosin isoforms during regeneration does not entirely 'recapitulate' the sequence of myosin transitions observed during normal development. Two weeks after the injury, the isomyosin electrophoretic pattern displayed by regenerated muscles was already the same as that of control muscles; the normal adult pattern was therefore expressed more rapidly in regenerating than in developing muscles. Except for the synthesis of the slow isoform which was generally inhibited in denervated muscles, the same types of myosins were expressed during the early stages of regeneration in denervated as in innervated muscles; long-term denervation prevented however the qualitative and quantitative recovery of the normal myosin pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号