首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Desmin expression by myoblasts cultured from embryonic and adult chicken breast muscle was examined employing indirect immunofluorescence. The study was performed in conjunction with [3H]thymidine autoradiography and analysis of skeletal myosin expression in order to determine whether the desmin-expressing cells were terminally differentiated. Following 2 h of labeling with [3H]thymidine, 0.55%, 2.60%, and 15.10% of the cells in mass cultures from 10-day-old embryos, 18-day-old embryos and adults, respectively, incorporated [3H]thymidine and were desmin-positive but did not express skeletal-muscle-specific myosin. Using the same approach we determined that 0.07%, 1.25%, and 7.59% of the mononucleated cells in myogenic clones from 10-day-old embryos, 18-day-old embryos and adults, respectively, were desmin-positive, myosin-negative, [3H]thymidine-positive. We suggest that these desmin-positive, myosin-negative myoblasts are proliferating cells, and we conclude that the progeny of adult myoblasts exhibit more desmin-expressing cells of this type than embryonic myoblasts do.  相似文献   

3.
Temporal appearance of satellite cells during myogenesis.   总被引:3,自引:0,他引:3  
In this study, differences between fetal and adult myoblasts in clonal and high density culture have been used to determine when adult myoblasts can first be detected during avian development. The results indicate that avian adult myoblasts are apparent as a distinct population of myoblasts during the midfetal stage of development. Three different criteria were used to differentiate fetal and adult myoblasts and demonstrate when adult myoblasts become a major proportion of the myoblast population: (1) differences in slow myosin heavy chain 1 (MHC1) isoform expression, (2) initiation of DNA synthetic activity, and (3) average myoblast length. Fetal chicken (ED10-12) pectoralis muscle (PM) myoblasts form myotubes that express slow MHC1 after prolonged culture, while adult chicken PM myoblasts do not. Fetal avian myoblasts were active in DNA synthesis and large when first isolated, reaching peak rates of synthesis by 24 hr in culture, while adult myoblasts were inactive in DNA synthesis and small when first isolated, only reaching peak rates of DNA synthesis and size at 3 days of incubation. A dramatic decrease in the percentage of muscle colonies with fibers that expressed slow MHC1 was observed between the midfetal stage and hatching in the chicken, along with a corresponding decrease in myoblast DNA synthetic activity and average length during this same period in both the chicken and the quail. Myoblast activity and average length increased again 3-4 days posthatch and a small transient increase in the number of slow MHC1-expressing clones was also associated with the massive growth of muscle that occurs in the neonatal bird. We conclude that adult myoblasts are present as a distinct population of myoblasts at least as early as the midfetal stages of avian development.  相似文献   

4.
《The Journal of cell biology》1983,97(5):1348-1355
Heterokaryons derived from polyethylene glycol-mediated fusion of myoblasts at different stages of development were used to investigate the transition of cells in the skeletal muscle lineage from the determined to the differentiated state. Heterokaryons were analyzed by immunofluorescence, using rabbit antibodies against the skeletal muscle isoforms of chicken creatine kinase and myosin, and a mouse monoclonal antibody that cross-reacts with chicken and rat skeletal muscle myosin. When cytochalasin B-treated rat L8(E63) myocytes (Konieczny S.F., J. McKay, and J. R. Coleman, 1982, Dev. Biol., 91:11-26) served as the differentiated parental component and chicken limb myoblasts from stage 23-26 or 10-12-d embryos were used as the determined, undifferentiated parental cell, heterokaryons exhibited a progressive extinction of rat skeletal muscle myosin during a 4-6-d culture period, and no precocious expression of chicken differentiated gene products was detected. In the reciprocal experiment, 85-97% of rat myoblast X chicken myocyte heterokaryons ceased expression of chicken skeletal muscle myosin and the M subunit of chicken creatine kinase within 7 d of culture. Extinction was not observed in heterokaryons produced by fusion of differentiated chicken and differentiated rat myocytes and thus is not due to species incompatibility or to the polyethylene glycol treatment itself. The results suggest that, when confronted in a common cytoplasm, the regulatory factors that maintain myoblasts in a proliferating, undifferentiated state are dominant over those that govern expression of differentiated gene products.  相似文献   

5.
Hybrid cells were isolated by fusing primary chicken myoblasts to HPRT-deficient rat L6 myoblasts and incubating the cells in medium containing HAT and ouabain. All hybrid clones contained both rat and chicken chromosomes and expressed a number of gene products characteristic of both species. Although all clones were capable of fusing spontaneously to form myofibers, immunofluorescence and isoenzyme analysis revealed only the rat forms of skeletal muscle myosin and MM-creatine kinase. No differentiated gene products of chicken origin were detected. Analysis of the expression of chicken HPRT revealed that some hybrid clones were capable of modulating this enzyme activity when switched from HAT medium into thioguanine medium and back into HAT, even though HPRT is normally a constitutively expressed enzyme. Parental control cells were incapable of this modulation phenomenon.  相似文献   

6.
Hybrid cells were isolated by fusing primary chicken myoblasts to HPRT-deficient rat L6 myoblasts and incubating the cells in medium containing HAT and ouabain. All hybrid clones contained both rat and chicken chromosomes and expressed a number of gene products characteristic of both species. Although all clones were capable of fusing spontaneously to form myofibers, immunofluorescence and isoenzyme analysis revealed only the rat forms of skeletal muscle myosin and MM-creatine kinase. No differentiated gene products of chicken origin were detected. Analysis of the expression of chicken HPRT revealed that some hybrid clones were capable of modulating this enzyme activity when switched from HAT medium into thioguanine medium and back into HAT, even though HPRT is normally a constitutively expressed enzyme. Parental control cells were incapable of this modulation phenomenon.  相似文献   

7.
Growth of limb muscle is dependent on skeletal-derived Indian hedgehog   总被引:1,自引:0,他引:1  
During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh−/− embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of Ihh in chicken embryo hindlimbs reduced skeletal muscle mass similar to that seen in Ihh−/− mouse embryos. The reduction in muscle mass appears to be a direct effect of Ihh since ectopic expression of Ihh by RCAS retroviral infection of chicken embryo hindlimbs restores muscle mass. These effects are independent of bone length, and occur when Shh is not expressed, suggesting Ihh acts directly on fetal myoblasts to regulate secondary myogenesis. Loss of muscle mass in Ihh null mouse embryos is accompanied by a dramatic increase in myoblast apoptosis by a loss of p21 protein. Our data suggest that Ihh promotes fetal myoblast survival during their differentiation into secondary myofibers by maintaining p21 protein levels.  相似文献   

8.
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.  相似文献   

9.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

10.
Isolated chicken myoblasts had previously been utilized in many studies aiming at understanding the emergence and regulation of the adult myogenic precursors (satellite cells). However, in recent years only a small number of chicken satellite cell studies have been published compared to the increasing number of studies with rodent satellite cells. In large part this is due to the lack of markers for tracing avian myogenic cells before they become terminally differentiated and express muscle-specific structural proteins. We previously demonstrated that myoblasts isolated from fetal and adult chicken muscle display distinct schedules of myosin heavy-chain isoform expression in culture. We further showed that myoblasts isolated from newly hatched and young chickens already possess the adult myoblast phenotype. In this article, we report on the use of polyclonal antibodies against the chicken myogenic regulatory factor proteins MyoD and myogenin for monitoring fetal and adult chicken myoblasts as they progress from proliferation to differentiation in culture. Fetal-type myoblasts were isolated from 11-day-old embryos and adult-type myoblasts were isolated from 3-week-old chickens. We conclude that fetal myoblasts express both MyoD and myogenin within the first day in culture and rapidly transit into the differentiated myosin-expressing state. In contrast, adult myoblasts are essentially negative for MyoD and myogenin by culture Day 1 and subsequently express first MyoD and then myogenin before expressing sarcomeric myosin. The delayed MyoD-to-myogenin transition in adult myoblasts is accompanied by a lag in the fusion into myotubes, compared to fetal myoblasts. We also report on the use of a commercial antibody against the myocyte enhancer factor 2A (MEF2A) to detect terminally differentiated chicken myoblasts by their MEF2+ nuclei. Collectively, the results support the hypothesis that fetal and adult myoblasts represent different phenotypic populations. The fetal myoblasts may already be destined for terminal differentiation at the time of their isolation, and the adult myoblasts may represent progenitors that reside in an earlier compartment of the myogenic lineage.  相似文献   

11.
Hepatic iodothyronine deiodinases (Ds) are involved in the conversion of thyroid hormones (THs) which interacts with growth hormone (GH) to regulate posthatch growth in the chicken. Previous studies suggest that leptin-like immunoreactive substance deposited in the egg may serve as a maternal signal to program posthatch growth. To test the hypothesis that maternal leptin may affect early posthatch growth through modifying hepatic activation of THs, we injected 5.0μg of recombinant murine leptin into the albumen of breeder eggs before incubation. Furthermore, chicken embryo hepatocytes (CEHs) were treated with leptin in vitro to reveal the direct effect of leptin on expression and activity of Ds. In ovo leptin administration markedly accelerated early posthatch growth, elevated serum levels of total and free triiodothyronine (tT3 and fT3), while that of total thyroxin (tT4) remained unchanged. Hepatic mRNA expression and activity of D1 which converts T4 to T3 or rT3 to T2, were significantly increased in leptin-treated chickens, while those of D3 which converts T3 to T2 or T4 to rT3, were significantly decreased. Moreover, hepatic expression of GHR and IGF-I mRNA was all up-regulated in leptin-treated chickens. Males demonstrated more pronounced responses. A direct effect of leptin on Ds was shown in CEHs cultured in vitro. Expression and activity of D1 were increased, whereas those of D3 were decreased, in leptin-treated cells. These data suggest that in ovo leptin administration improves early posthatch growth, in a gender-specific fashion, probably through improving hepatic activation of THs and up-regulating hepatic expression of GHR and IGF-I.  相似文献   

12.
13.
Under the influence of the limb mesenchyme, Hoxa-11 is expressed in migrating and proliferating premyoblasts in the limb field and Hoxa-13 is induced in subdomains of congregated limb muscle masses. To evaluate the roles of Hoxa-11 and Hoxa-13 in myogenesis of the limb, we performed electroporation in ovo to force expression of these Hox genes in limb muscle precursors. In the presence of ectopic Hoxa-11, expression of MyoD was blocked transiently. In C2C12 myoblasts, transfection of Hoxa-11 also repressed the expression of endogenous MyoD. Forced expression of Hoxa-13 resulted in more pronounced repression of MyoD in both limb and C2C12 myoblasts. In contrast, targeted disruption of Hoxa-13 gave rise to enhanced expression of MyoD in the flexor carpi radialis muscle, a forearm muscle that normally expressed Hoxa-13. These results suggest that Hoxa-11 and Hoxa-13 are involved in the negative regulation of MyoD expression in limb muscle precursors.  相似文献   

14.
Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis   总被引:9,自引:0,他引:9       下载免费PDF全文
We assessed viable Pax7(-/-) mice in 129Sv/J background and observed reduced growth and marked muscle wasting together with a complete absence of functional satellite cells. Acute injury resulted in an extreme deficit in muscle regeneration. However, a small number of regenerated myofibers were detected, suggesting the presence of residual myogenic cells in Pax7-deficient muscle. Rare Pax3(+)/MyoD+ myoblasts were recovered from Pax7(-/-) muscle homogenates and cultures of myofiber bundles but not from single myofibers free of interstitial tissues. Finally, we identified Pax3+ cells in the muscle interstitial environment and demonstrated that they coexpressed MyoD during regeneration. Sublaminar satellite cells in hind limb muscle did not express detectable levels of Pax3 protein or messenger RNA. Therefore, we conclude that interstitial Pax3+ cells represent a novel myogenic population that is distinct from the sublaminar satellite cell lineage and that Pax7 is essential for the formation of functional myogenic progenitors from sublaminar satellite cells.  相似文献   

15.
16.
17.
Mice with a targeted mutation in the myogenic basic helix-loop-helix regulatory protein myogenin have severe muscle defects resulting in perinatal death. In this report, the effect of myogenin's absence on embryonic and fetal development is investigated. The initial events of somite differentiation occurred normally in the myogenin-mutant embryos. During primary myogenesis, muscle masses in mutant embryos developed simultaneously with control siblings, although muscle differentiation within the mutant muscle masses was delayed. More dramatic effects were observed when secondary myofibers form. During this time, very little muscle formation took place in the mutants, suggesting that the absence of myogenin affected secondary myogenesis more severely than primary myogenesis. Monitoring mutant neonates with fiber type-specific myosin isoforms indicated that different fiber types were present in the residual muscle. No evidence was found to indicate that myogenin was required for the formation of muscle in one region of the embryo and not another. The expression patterns of a MyoD- lacZ transgene in myogenin-mutant embryos demonstrated that myogenin was not essential for the activation of the MyoD gene. Together, these results indicate that late stages of embryogenesis are more dependent on myogenin than early stages, and that myogenin is not required for the initial aspects of myogenesis, including myotome formation and the appearance of myoblasts.  相似文献   

18.
Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle   总被引:4,自引:0,他引:4  
The application of a weight overload to the humerus of chickens induces a hypertrophy of anterior latissimus dorsi (ALD) muscle fibers. This growth is accompanied by a rapid and almost complete replacement of one slow-tonic myosin isoform, SM-1, by another slow-tonic isoform, SM-2. In addition, a population of small fibers appears mainly in extrafascicular spaces and, concurrently, three additional myosin bands are detected by gel electrophoresis. Five antibodies against myosin heavy chain (MHC) isoforms were selected as immunocytochemical probes to determine the cellular location and nature of these myosins. The antibodies react with ventricular, fast skeletal muscle and either SM-1 or SM-2, or both the slow-tonic MHCs. The antifast and antiventricular antibodies react with myosin present in the 10-day embryonic ALD muscle but do not react with myosin in posthatch ALD muscle. The small fibers in overloaded muscle contain a myosin isoform characteristically expressed during the embryonic stage of ALD muscle development and therefore are named nascent myofibers. Some of the nascent myofibers do not react with the antibody to both slow-tonic MHCs, indicating the lack of the normal adult slow-tonic myosins which are expressed in 10-day embryos. In order to explore the origin of the nascent fibers, an electron microscopic study was performed. Stereological analysis of the existing fibers shows a stimulation of numbers and sizes of satellite cells. In addition, the volume occupied by nonmuscle and undifferentiated cells increases dramatically. Myotube formation with incipient myofibrils is seen in extrafascicular spaces. These data suggest that new muscle fiber formation accompanies hypertrophy in overloaded chicken ALD muscle and the process may involve satellite cell migration.  相似文献   

19.
Lens capsule collagen synthesis by epithelial and fiber cells was examined by immunoprecipitation and collagenase digestion in embryonic and posthatch chicken eye lens. Epithelial cells and lens fibers in the process of terminal differentiation produce alpha 1 and alpha 2 type IV collagen chains. At 6 days of embryonic development in addition to the alpha 1 (IV) and alpha 2 (IV) collagen chains, lens cells produce high molecular weight collagenase-sensitive proteins not immunologically related to type IV collagen. Lens capsule collagen components have been identified in central and outer fibers isolated from 18-day embryos and from 10-day posthatch chicken eyes. At these stages, fibers which have an increasing number of picnotic nuclei still show collagen synthesis due to long-lived mRNA. Analysis of collagen synthesis by lens cells incubated with actinomycin D suggests that stabilization of collagen mRNA occurs in lens fiber cells and to a lesser extent in epithelial cells as early as 6 days of embryonic development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号