首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytokines had important role in the pathogenesis of necrotizing enterocolitis (NEC). The aim of this study is to investigate if IFN-alpha has a prophylaxic effect on experimental NEC development in newborn rat pups. Twenty eight Wistar Albino newborn rat pups were divided into three groups. Control group rats were breast-fed, NEC group and interferon (IFN) group rat pups were hand-fed with premature newborn formula. IFN-alpha was administered subcutaneously at a dose of 50,000 IU/rat/day in IFN group. NEC was induced experimentally by cold stress twice a day in IFN and NEC groups. On the fourth day, the rats were killed, and all the intestine were removed to determine the tissue level of malonaldehyde (MDA) and histologic changes. The microscopic lesions in the NEC group rats were virtually the same as those seen in neonatal NEC, with severe separation of submucosa and/or lamina propria, loss of villi and in some cases necrosis to extention the muscularis. In contrast, in the rats treated with IFN, lesions were moderate separation of submucosa and/or lamina propria, edema in submucosal and muscular layers. Intestinal injury score and MDA levels in NEC group were significantly higher than in the IFN group (P<0.05). In conclusion it was suggested that IFN-alpha was effective in reducing the severity of NEC in rat pups.  相似文献   

2.
Necrotizing enterocolitis (NEC) is a disease of neonates that is increasing in incidence and often results in significant morbidity and mortality. Carbon monoxide (CO), a byproduct of the catabolism of heme, is known to have anti-inflammatory and antiapoptotic properties. In this study, we aimed to demonstrate that inhaled CO protects against the development of intestinal inflammation in a model of experimental NEC as well as decreases enterocyte cell death in vitro. Additionally, we also aimed to demonstrate that CO decreases enterocyte production of inducible nitric oxide synthase (iNOS) and nitric oxide (NO). Neonatal rats were exposed to intermittent hypoxia exposure and formula feeding to induce experimental NEC. Animals randomized to CO treatment were put in an environment containing 0.025% CO for 1 h/day on days 1-3 of life. All animals were killed on day 4 of life. In vitro experiments were performed with IEC-6 cells, a rat enterocyte cell line. Cells were examined for viability, iNOS production, and elaboration of NO. We found that CO diminished levels of serum inflammatory cytokines and nitrites, protected against intestinal inflammation, and decreased ileal iNOS production and protein nitration in a model of experimental NEC. In vitro, CO decreased cytokine- or hypoxia/endotoxin-induced iNOS and NO production. CO also abrogated TNF-alpha- and actinomycin D-induced apoptosis or hypoxia/endotoxin-induced cell death. In conclusion, 1 h of daily low-dose inhaled CO protected against the development of intestinal inflammation in a model of experimental NEC. iNOS and NO production were decreased by CO both in vivo and in vitro. CO may prove to be a useful clinical adjunct in the treatment of NEC.  相似文献   

3.
Necrotizing enterocolitis (NEC) is one of the most widespread and devastating gastrointestinal diseases in neonates. Destruction of the intestinal barrier is the main underlying cause of NEC. The aim of this study was to determine the role of lactadherin in preventing NEC in a neonatal rat model and investigate the molecular mechanism of lactadherin-mediated protection of the intestinal barrier. Neonatal rats were divided into three groups: dam feeding (DF), NEC (NEC), and NEC supplemented with 10 μg/(g·day) recombinant human lactadherin (NEC+L). Intestinal permeability, tissue damage, and cell junction protein expression and localization were evaluated. We found that lactadherin reduced weight loss caused by NEC, reduced the incidence of NEC from 100% to 46.7%, and reduced the mean histological score for tissue damage to 1.40 compared with 2.53 in the NEC group. Intestinal permeability of lactadherin-treated rats was significantly reduced when compared with that of the NEC group. In addition, the expression levels of JAM-A, claudin 3, and E-calcium in the ileum of NEC group animals increased compared with those in the ileum of DF group animals, and these levels decreased in the NEC+L group. Lactadherin changed the localization of claudin 3, occludin, and E-cadherin in epithelial cells. The mechanism underlying lactadherin-mediated protection of the intestinal barrier might be restoring the correct expression levels and localization of tight junction and adherent junction proteins. These findings suggest a new candidate agent for the prevention of NEC in newborns.  相似文献   

4.
Claud EC 《Anaerobe》2011,17(4):180-185
Neonatal necrotizing enterocolitis (NEC) is one of few diseases for which probiotics have appeared to have clear benefit in clinical trials, however safety concerns persist. Clinical trials of probiotics have preceded our understanding of the effect of probiotics on the developing gut and microbial colonization patterns of the preterm infant. Colonization of the preterm intestine begins with the birthing process and is then influenced by the neonatal intensive care unit and iatrogenic manipulations. Resulting altered microbiota may have significant implications for the immature preterm gut and susceptibility to NEC.  相似文献   

5.
Necrotizing enterocolitis (NEC) is the most common intestinal disease of premature infants. Although increased mucosal permeability and altered epithelial structure have been associated with many intestinal disorders, the role of intestinal barrier function in NEC pathogenesis is currently unknown. We investigated the structural and functional changes of the intestinal barrier in a rat model of NEC. In addition, the effect of EGF treatment on intestinal barrier function was evaluated. Premature rats were divided into three groups: dam fed (DF), formula fed (NEC), or fed with formula supplemented with 500 ng/ml EGF (NEC + EGF); all groups were exposed to asphyxia/cold stress to develop NEC. Intestinal permeability, goblet cell density, mucin production, and composition of tight junction (TJ) proteins were evaluated in the terminal ileum, the site of NEC injury, and compared with the proximal jejunum, which was unaffected by NEC. Animals with NEC had significantly increased intestinal paracellular permeability compared with DF pups. Ileal goblet cell morphology, mucin production, and TJ composition were altered in animals with NEC. EGF treatment significantly decreased intestinal paracellular permeability, increased goblet cell density and mucin production, and normalized expression of two major TJ proteins, occludin and claudin-3, in the ileum. In conclusion, experimental NEC is associated with disruption of the intestinal barrier. EGF treatment maintains intestinal integrity at the site of injury by accelerating goblet cell maturation and mucin production and normalizing expression of TJ proteins, leading to improved intestinal barrier function.  相似文献   

6.
Necrotizing enterocolitis (NEC) is a devastating intestinal disease of premature infants. Although end-stage NEC is characterized histopathologically as extensive necrosis, apoptosis may account for the initial loss of epithelium before full development of disease. We have previously shown that epidermal growth factor (EGF) reduces the incidence of NEC in a rat model. Although EGF has been shown to protect intestinal enterocytes from apoptosis, the mechanism of EGF-mediated protection against NEC is not known. The aim of this study was to investigate if EGF treatment elicits changes in expression of apoptotic markers in the ileum during the development of NEC. With the use of a well-established neonatal rat model of NEC, rats were divided into the following three experimental groups: dam fed (DF), milk formula fed (NEC), or fed with formula supplemented with 500 ng/ml EGF (NEC+EGF). Changes in ileal morphology, gene and protein expression, and histological localization of apoptotic regulators were evaluated. Anti-apoptotic Bcl-2 mRNA levels were markedly reduced and pro-apoptotic Bax mRNA levels were markedly elevated in the NEC group compared with DF controls. Supplementation of EGF into formula significantly increased anti-apoptotic Bcl-2 mRNA, whereas pro-apoptotic Bax was significantly decreased. The Bax-to-Bcl-2 ratio for mRNA and protein was markedly decreased in NEC+EGF animals compared with the NEC group. The presence of caspase-3-positive epithelial cells was markedly reduced in EGF-treated rats. These data suggest that alteration of the balance between pro-and anti-apoptotic proteins in the site of injury is a possible mechanism by which EGF maintains intestinal integrity and protects intestinal epithelium against NEC injury.  相似文献   

7.
The impermeant nature of the intestinal barrier is maintained by tight junctions (TJs) formed between adjacent intestinal epithelial cells. Disruption of TJs and loss of barrier function are associated with a number of gastrointestinal diseases, including neonatal necrotizing enterocolitis (NEC), the leading cause of death from gastrointestinal diseases in preterm infants. Human milk is protective against NEC, and the human milk factor erythropoietin (Epo) has been shown to protect endothelial cell-cell and blood-brain barriers. We hypothesized that Epo may also protect intestinal epithelial barriers, thereby lowering the incidence of NEC. Our data demonstrate that Epo protects enterocyte barrier function by supporting expression of the TJ protein ZO-1. As immaturity is a key factor in NEC, Epo regulation of ZO-1 in the human fetal immature H4 intestinal epithelial cell line was examined and demonstrated Epo-stimulated ZO-1 expression in a dose-dependent manner through the PI3K/Akt pathway. In a rat NEC model, oral administration of Epo lowered the incidence of NEC from 45 to 23% with statistical significance. In addition, Epo treatment protected intestinal barrier function and prevented loss of ZO-1 at the TJs in vivo. These effects were associated with elevated Akt phosphorylation in the intestine. This study reveals a novel role of Epo in the regulation of intestinal epithelial TJs and barrier function and suggests the possible use of enteral Epo as a therapeutic agent for gut diseases.  相似文献   

8.
In the feline intestine studies have implicated superoxide (O.-) and other oxygen derived free radicals as initiators of injury as measured by increased capillary permeability during the reperfusion period. Biochemical mechanisms of this free radical generation include: xanthine oxidase dependent O.- production, hydrogen peroxide (H2O2) formation by superoxide dismutase (SOD), hydroxyl radical (OH-) production via the Haber-Weiss reaction, and lipid radical formation from membrane peroxidation. Pathological consequences of these events include inflammatory neutrophil infiltration, damage to the collagen and mucosal basement membrane, increased capillary permeability, edema, cell degeneration and necrosis. Animal models of neonatal necrotizing enterocolitis (NNEC) indicate that intestinal injury occurs after the etiologic factors (hypothermia, hypoxia) are removed. In order to determine the role of active oxygen species in the pathogenesis of NNEC, weanling hamsters and neonatal piglets were cold stressed and activities of pro/antioxidant enzymes were determined, and histopathologic and ultrastructural studies were performed. Cold stressed weanling hamsters showed a 55.7% (P less than 0.05) decrease in xanthine dehydrogenase/xanthine oxidase activity ratio. Light microscopy revealed scattered colonic mucosal erosions and submucosal edema in 50% of cold stressed animals. Transmission electron microscopy demonstrated degeneration of colonic mucosal epithelial cells, enlarged intracellular spaces, cytoplasmic vacuolization, and nuclear membrane swelling. The colonic serosa was also edematous and infiltrated with bacteria. Large intestinal tissue from cold stressed neonatal piglets showed a significant increase (P less than 0.05) in Mn and Cu, Zn, SOD, CAT, GSH-Red, total GSH, and Glc6-PD at 0 and 12 hrs. post stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Necrotizing enterocolitis (NEC) is a life-threatening gastrointestinal disorder afflicting preterm infants, which is currently unpreventable. Fecal microbiota transplantation (FMT) is a promising preventive therapy, but the transfer of pathogenic microbes or toxic compounds raise concern. Removal of bacteria from donor feces by micropore filtering may reduce this risk of bacterial infection, while residual bacteriophages could maintain the NEC-preventive effects. We aimed to assess preclinical efficacy and safety of fecal filtrate transplantation (FFT). Using fecal material from healthy suckling piglets, we compared rectal FMT administration (FMT, n = 16) with cognate FFT by either rectal (FFTr, n = 14) or oro-gastric administration (FFTo, n = 13) and saline (CON, n = 16) in preterm, cesarean-delivered piglets as models for preterm infants. We assessed gut pathology and analyzed mucosal and luminal bacterial and viral composition using 16S rRNA gene amplicon and meta-virome sequencing. Finally, we used isolated ileal mucosa, coupled with RNA-Seq, to gauge the host response to the different treatments. Oro-gastric FFT completely prevented NEC, which was confirmed by microscopy, whereas FMT did not perform better than control. Oro-gastric FFT increased viral diversity and reduced Proteobacteria relative abundance in the ileal mucosa relative to control. An induction of mucosal immunity was observed in response to FMT but not FFT. As preterm infants are extremely vulnerable to infections, rational NEC-preventive strategies need incontestable safety profiles. We show in a clinically relevant animal model that FFT, as opposed to FMT, efficiently prevents NEC without any recognizable side effects.Subject terms: Bacteriophages, Microbial ecology, Inflammatory bowel disease  相似文献   

10.
11.

Background  

Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in newborn neonates. Bacteria are believed to be important in the pathogenesis of NEC but bacterial characterization has only been done on human faecal samples and experimental animal studies. The aim of this study was to investigate the microbial composition and the relative number of bacteria in inflamed intestinal tissue surgically removed from neonates diagnosed with NEC (n = 24). The bacterial populations in the specimens were characterized by laser capture microdissection and subsequent sequencing combined with fluorescent in situ hybridization (FISH), using bacterial rRNA-targeting oligonucleotide probes.  相似文献   

12.
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease, that affects premature infants. Glucagon-like peptide-2 (GLP-2) is an intestinotrophic hormone and reduces the inflammation. We suspected that GLP-2 would have protective and anti-inflammatory effects in an experimental rat model of NEC. NEC was induced in newborn rats by enteral feeding with hyperosmolar formula, asphyxial stress and enteral administration of lipopolysaccharide (LPS). Rats were randomly divided into the following four groups: dam-fed, NEC, NEC + GLP-2(L) given 80 μg/kg/day of GLP-2, and NEC + GLP-2(H) given 800 μg/kg/day of GLP-2. GLP-2 was administered subcutaneously every 6 h before stress. All animals surviving beyond 96 h or any that developed signs of distress were euthanized. The clinical sickness score in the NEC + GLP-2(H) group was significantly lower than that in the NEC group. The NEC score and the survival rate in the NEC + GLP-2(H) group was significantly improved compared with those in the NEC and the NEC + GLP-2(L) groups. Villous height and crypt depth in both the GLP-2 treatment groups were significantly increased compared with those in the NEC group. There were no significant differences in the crypt cell proliferation indices among the groups. Ileal interstitial TNF-α and IL-6 level in the NEC + GLP-2(H) group was decreased to the same levels in the dam-fed group. High dose GLP-2 administration improved the incidence and survival rate for NEC. It also decreased mucosal inflammatory cytokine production. These results support a potential therapeutic role for GLP-2 in the treatment of NEC.  相似文献   

13.
14.
Nitrosative stress in an animal model of necrotizing enterocolitis   总被引:1,自引:0,他引:1  
Necrotizing enterocolitis (NEC) is a disease of newborns characterized by gut barrier failure. We reasoned that upregulation of inducible nitric oxide synthase (iNOS) may result in nitrosative stress and accumulation of nitroso species in the intestine. Newborn rats were either breast-fed (BF), or formula-fed and additionally subjected to hypoxia (FFH). At Day 4 after birth, the distal ilea were harvested and processed for Western blot analysis and measurement of NO-related metabolites. While BF neonates showed normal morphology, FFH neonates developed signs of NEC by Day 4. These pathological changes correlated with upregulation of iNOS and increases in tissue nitrite, nitrosothiol, and nitrosamine concentrations. Enhanced nitroso levels were most prominent in the mucosal layers of the ileum and iNOS inhibition resulted in a significant decrease in both nitroso species and incidence of NEC. In contrast, increased nitrite levels were distributed evenly throughout the ileum and remained unchanged following iNOS inhibition. Similarly, specimens from NEC patients had higher intestinal levels of NO-related metabolites compared to non-NEC controls. This is the first report of tissue levels of nitroso species in the gut of an animal model of NEC and of human specimens. The results suggest that local nitrosative stress contributes to the pathology associated with NEC. Unexpectedly, the NO breakdown product nitrite, previously considered biologically inert, was found to be present throughout the ileal wall, suggesting that cellular NO metabolism is altered significantly in NEC. Whether nitrite plays a protective or deleterious role remains to be investigated.  相似文献   

15.
Fecal microbiota in premature infants prior to necrotizing enterocolitis   总被引:1,自引:0,他引:1  
Intestinal luminal microbiota likely contribute to the etiology of necrotizing enterocolitis (NEC), a common disease in preterm infants. Microbiota development, a cascade of initial colonization events leading to the establishment of a diverse commensal microbiota, can now be studied in preterm infants using powerful molecular tools. Starting with the first stool and continuing until discharge, weekly stool specimens were collected prospectively from infants with gestational ages ≤32 completed weeks or birth weights≤1250 g. High throughput 16S rRNA sequencing was used to compare the diversity of microbiota and the prevalence of specific bacterial signatures in nine NEC infants and in nine matched controls. After removal of short and low quality reads we retained a total of 110,021 sequences. Microbiota composition differed in the matched samples collected 1 week but not <72 hours prior to NEC diagnosis. We detected a bloom (34% increase) of Proteobacteria and a decrease (32%) in Firmicutes in NEC cases between the 1 week and <72 hour samples. No significant change was identified in the controls. At both time points, molecular signatures were identified that were increased in NEC cases. One of the bacterial signatures detected more frequently in NEC cases (p<0.01) matched closest to γ-Proteobacteria. Although this sequence grouped to the well-studied Enterobacteriaceae family, it did not match any sequence in Genbank by more than 97%. Our observations suggest that abnormal patterns of microbiota and potentially a novel pathogen contribute to the etiology of NEC.  相似文献   

16.
目的比较金双歧、妈咪爱预防新生儿坏死性小肠结肠炎(NEC)的效果。方法将我院新生儿科2012年7月至2014年6月两年间收治的新生儿随机分为金双歧组、妈咪爱组、对照组。将颅内出血Ⅲ-Ⅳ级、严重先天性疾病的患儿排除。金双歧组给予金双歧口服或鼻饲0.5 g tid,妈咪爱组给予妈咪爱口服或鼻饲1.0 g bid,对照组给予生理盐水口服或鼻饲1.0 mL bid,观察各组NEC发生率。结果金双歧组170例,发生NEC 4例,发生率为2.35%;妈咪爱组160例,发生NEC 10例,发生率为6.25%;对照组150例,发生NEC 20例,发生率为13.33%。结论口服益生菌对预防新生儿NEC有显著作用,可以降低其发病率。金双歧、妈咪爱对预防新生儿NEC差异无统计学意义,但金双歧组的发病率更低,秩和值更低。推荐临床上尽早使用金双歧预防NEC的发生。  相似文献   

17.
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease predominantly of prematurely born infants, characterized in its severest from by extensive hemorrhagic inflammatory necrosis of the distal ileum and proximal colon. Proinflammatory cytokines have been implicated in the development of NEC, and we have previously shown that IL-18 is significantly elevated in the well-established neonatal rat model of NEC. To determine whether IL-18 contributes to intestinal pathology in NEC, we subjected IL-18 knockout mice to the protocol used to develop experimental NEC in newborn rats. Newborn B6.129P2-Il18(tm1Aki)/J (NEC IL-18(-/-)) and wild-type (NEC WT) mice were hand fed every 3 h with cow's milk-based formula and exposed to asphyxia and cold stress twice daily. After 72 h, animals were killed and distal ileum and liver were removed. Disease development was determined via histological changes in the ileum as scored by a blinded evaluator. The number of TNF-alpha-, IL-12-, and IL-1beta-positive cells and macrophages were determined in both ileum and liver via immunohistology. IkappaB-alpha and IkappaB-beta were determined from protein extracts from both ileum and liver using Western blot analysis. The incidence and severity of NEC was significantly reduced in NEC IL-18(-/-) mice compared with NEC WT. Furthermore, mean ileal macrophages and hepatic IL-1beta were significantly reduced in IL-18(-/-) mice subjected to the NEC protocol. There were no statistically significant changes in Kupffer cells, hepatic TNF-alpha, ileal IL-1beta, or IL-12. IkappaB-alpha and IkappaB-beta were significantly increased in NEC IL-18(-/-) mice ileum and liver, respectively. These results confirm that IL-18 plays a crucial role in experimental NEC pathogenesis.  相似文献   

18.
目的探讨静脉输注丙种球蛋白(IVIG)与新生儿溶血病(HDN)患儿坏死性小肠结肠炎(NEC)发生的关系。方法收集重庆医科大学附属儿童医院2013年1月1日至2014年1月1日确诊为HDN患儿的临床资料,采用倾向评分配比法建立回顾性队列研究,根据是否使用IVIG分为IVIG组和非IVIG组,比较两组患儿NEC发生情况。进一步以配比后病例建立病例对照研究,探讨溶血病患儿发生NEC的危险因素。结果共1 217例HDN患儿纳入研究,其中40例合并NEC,309例进行IVIG。进行1∶2的倾向评分配比后,共有199对匹配成功,其中NEC组25例,非NEC组572例。结果显示,倾向评分配比后,IVIG治疗并未增加溶血病患儿NEC的发生率,4.5%(9/199)vs 4.0%(16/398),χ2=0.083,P=0.773。单因素分析显示,早产、低出生体重、多胎、胎膜早破、产前糖皮质激素、静脉营养、先天性心脏病、最高胆红素值与溶血病患儿发生NEC有关。二元Logistic回归显示,先天性心脏病是溶血病患儿发生NEC的独立危险因素(OR:4.021,95%CI:1.286~12.578)。结论 IVIG治疗不增加溶血病患儿发生NEC的概率,合并先天性心脏病的HDN患儿更易发生NEC。  相似文献   

19.
益生菌预防早产儿坏死性小肠结肠炎的研究进展   总被引:1,自引:0,他引:1  
吴燕君  华子瑜 《中国微生态学杂志》2011,23(11):1050-1052,1055
新生儿坏死性小肠结肠炎(Neonatal necrotizing enterocolitis,NEC)是早产儿中发病率高、预后差、死亡率高的严重肠道疾病;目前,本病的发病机制尚未明确,缺乏有效的治疗方法。近十几年,大量试验显示,口服益生菌能有效预防早产儿NEC,但其作用机制尚未完全明确,且在益生菌种类选择、给药方式(单药、联合给药)、疗效、安全性等方面,仍存在一些问题。因此,本文就上述问题进行综述。  相似文献   

20.
Necrotizing enterocolitis (NEC) is a common and devastating gastrointestinal disease of premature infants. Along with pathological effects in the ileum, severe NEC is often accompanied by multisystem organ failure, including liver failure. The aim of this study was to determine the changes in hepatic cytokines and inflammatory mediators in experimental NEC. The well-established neonatal rat model of NEC was used in this study, and changes in liver morphology, numbers of Kupffer cells (KC), gene expression, and histological localization of IL-18, TNF-alpha, and inducible nitric oxide synthase were evaluated. Intestinal luminal TNF-alpha levels were also measured. Production of hepatic IL-18 and TNF-alpha and numbers of KC were increased in rats with NEC and correlated with the progression of intestinal damage during NEC development. Furthermore, increased levels of TNF-alpha in the intestinal lumen of rats with NEC was significantly decreased when KC were inhibited with gadolinium chloride. These results suggest an important role of the liver and the gut-liver axis in NEC pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号