首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1994,127(4):1041-1048
This paper describes the molecular and biochemical properties of KLP68D, a new kinesin-like motor protein in Drosophila melanogaster. Sequence analysis of a full-length cDNA encoding KLP68D demonstrates that this protein has a domain that shares significant sequence identity with the entire 340-amin acid kinesin heavy chain motor domain. Sequences extending beyond the motor domain predict a region of alpha-helical coiled-coil followed by a globular "tail" region; there is significant sequence similarity between the alpha-helical coiled- coil region of the KLP68D protein and similar regions of the KIF3 protein of mouse and the KRP85 protein of sea urchin. This finding suggests that all three proteins may be members of the same family, and that they all perform related functions. KLP68D protein produced in Escherichia coli is, like kinesin itself, a plus-end directed microtubule motor. In situ hybridization analysis of KLP68D RNA in Drosophila embryos indicates that the KLP68D gene is expressed primarily in the central nervous system and in a subset of the peripheral nervous system during embryogenesis. Thus, KLP68D may be used for anterograde axonal transport and could conceivably move cargoes in fly neurons different than those moved by kinesin heavy chain or other plus-end directed motors.  相似文献   

2.
The kinesin superfamily is a large group of proteins (kinesin-like proteins [KLPs]) that share sequence similarity with the microtubule (MT) motor kinesin. Several members of this superfamily have been implicated in various stages of mitosis and meiosis. Here we report our studies on KLP67A of Drosophila. DNA sequence analysis of KLP67A predicts an MT motor protein with an amino-terminal motor domain. To prove this directly, KLP67A expressed in Escherichia coli was shown in an in vitro motility assay to move MTs in the plus direction. We also report expression analyses at both the mRNA and protein level, which implicate KLP67A in the localization of mitochondria in undifferentiated cell types. In situ hybridization studies of the KLP67A mRNA during embryogenesis and larval central nervous system development indicate a proliferation-specific expression pattern. Furthermore, when affinity-purified anti-KLP67A antisera are used to stain blastoderm embryos, mitochondria in the region of the spindle asters are labeled. These data suggest that KLP67A is a mitotic motor of Drosophila that may have the unique role of positioning mitochondria near the spindle.  相似文献   

3.
A plant kinesin heavy chain-like protein is a calmodulin-binding protein   总被引:8,自引:0,他引:8  
Calmodulin, a calcium modulated protein, regulates the activity of several proteins that control cellular functions. A cDNA encoding a unique calmodulin-binding protein, PKCBP, was isolated from a potato expression library using protein-protein interaction based screening. The cDNA encoded protein bound to biotinylated calmodulin and 35S-labeled calmodulin in the presence of calcium and failed to bind in the presence of EGTA, a calcium chelator. The deduced amino acid sequence of the PKCBP has a domain of about 340 amino acids in the C-terminus that showed significant sequence similarity with the kinesin heavy chain motor domain and contained conserved ATP- and microtubule-binding sites present in the motor domain of all known kinesin heavy chains. Outside the motor domain, the PKCBP showed no sequence similarity with any of the known kinesins, but contained a globular domain in the N-terminus and a putative coiled-coil region in the middle. The calmodulin-binding region was mapped to a stretch of 64 amino acid residues in the C-terminus region of the protein. The gene is differentially expressed with the highest expression in apical buds. A homolog of PKCBP from Arabidopsis (AKCBP) showed identical structural organization indicating that kinesin heavy chains that bind to calmodulin are likely to exist in other plants. This paper presents evidence that the motor domain has microtubule stimulated ATPase activity and binds to microtubules in a nucleotide-dependent manner. The kinesin heavy chain-like calmodulin-binding protein is a new member of the kinesin superfamily as none of the known kinesin heavy chains contain a calmodulin-binding domain. The presence of a calmodulin-binding motif and a motor domain in a single polypeptide suggests regulation of kinesin heavy chain driven motor function(s) by calcium and calmodulin.  相似文献   

4.
A novel cryptic plasmid, pMP1, from an environmental Vibrio vulnificus MP-4 isolated from Mai Po Nature Reserve in Hong Kong, has been characterized. The 7.6-kb plasmid had guanine–cytosine content of 40.03% and encoded four open reading frames (ORFs) with >100 amino acids. The predicted protein of ORF1 contained 478 amino acids showing 29% identity and 50% similarity over 309 amino acids to the integrase of Vibrio cholerae phage VP2. ORF2 encoded a putative protein of 596 amino acids, which were 23% identity and 42% similarity over 455 amino acids to the tail tape measure protein TP901 of Chromohalobacter salexigens phage. ORF3 and ORF4 encoded putative proteins of 103 and 287 amino acids, respectively, but showed no homologies to any known proteins. Further experiments indicated that a 3.2-kb fragment from EcoRI digestion could self-replicate. Analysis indicated that a sequence upstream of ORF4 had the features characteristic of theta-type replicons: AT-rich region, six potential direct repeats (iterons) spaced approximately two DNA helical turn apart (about 23 bp), two copies of 9 bp dnaA boxes, three Dam methylation sites, and five inverted repeats. Complementation experiments confirmed that the protein encoded by ORF4 was required for plasmid replication. We propose that ORF4 encode a new type of Rep protein and pMP1 is a new type of theta plasmid.  相似文献   

5.
Two Tetrahymena kinesin-like proteins (klps) of the kinesin II subfamily, Kin1 and Kin2, were first identified by Brown et al. [1999: Mol Biol Cell 10: 3081-3096] and shown to be involved in ciliary morphogenesis probably as molecular motors in intraciliary transport (ICT). Using Tetrahymena genomic DNA as a template, we cloned Kin5, another kinesin II subfamily member. Kin5 is upregulated upon deciliation, suggesting that Kin5 is a ciliary protein. Kin5 is most closely related to Osm3, a Caenorhabditis elegans kinesin II; Osm3 and Kin5 have a 56% identity, which rises to 60.4% in the motor domain and a 45% identity in a 60 amino acid region of the C-terminal FERM (4.1, Ezrin, Radixin, Moesin) domain, not present in Kin1 or Kin2, which we hypothesize to be a critical domain either for dimerization or for cargo recognition in ICT. An antibody to a peptide sequence from the tail region of Kin5 localizes in a punctate pattern along the ciliary axoneme, colocalizing with an antibody to the raft protein IFT139. These findings suggest that Kin5 is an ICT motor like Osm3. Osm3 orthologs apparently transport membrane proteins and Kin5 may be the homodimeric kinesin II that performs this function in Tetrahymena cilia.  相似文献   

6.
CDC37基因编码的产物是一个参与蛋白激酶折叠成熟的分子伴侣蛋白,存在于多种真核生物中。在利用酵母双杂交系统筛选白念珠菌蛋白激酶Crk1相互作用蛋白时,获得一个CDC37同源基因。该基因编码区全长1524bp,编码一含508个氨基酸的蛋白质。其氨基酸序列与酿酒酵母Cdc37蛋白的序列同源性达41%。该基因在酿酒酵母中的表达能回复cdc37-1突变株的温度敏感表型,表明它能互补ScCDC37的功能。该基因命名为CaCDC37。Northern杂交显示,该基因在白念珠菌中呈组成型表达,转录水平不受形态转变和生长条件的影响;在crk1缺失株和CRK1高表达菌株中或者在cph1efg1双缺失株中,CaCDC37基因的转录水平没有明显变化。利用酵母双杂交系统分析CaCdc37与另外两个预测的白念珠菌分子伴侣蛋白CaSti1和CaHsp90的相互作用,结果表明CaCdc37能与CaSti1相互作用,而与CaHsp90的相互作用未能检测到。根据这些结果推测了CaCdc37可能的作用机制。  相似文献   

7.
白色念珠菌是一种重要的人体致病真菌 ,致病机制与其形态发生紧密相关。酿酒酵母Flo8因子在其形态发生中起重要作用 ,我们把白色念珠菌基因组DNA导入酿酒酵母flo8基因缺失株中 ,筛选能够互补 flo8侵入生长缺陷的基因 ,分离到了一个与酿酒酵母SRB9同源的新基因 ,命名为CaSRB9。该基因全长 4998bp ,编码一种16 6 5个氨基酸的蛋白质。在双倍体酿酒酵母中CaSRB9可以部分互补MAPK途径基因缺失株以及 flo8缺失株的菌丝生长缺陷 ;在单倍体酿酒酵母中表达能够互补 flo8缺失株的侵入生长缺陷 ,但在MAPK途径基因缺失株中不能形成侵入生长  相似文献   

8.
Kinesin and kinesin-like proteins (KLPs) are microtubule-based motor proteins that play important roles in organelle transport. Based on the homology to these proteins, a katD cDNA has now been isolated from a library prepared from flowers of Arabidopsis thaliana ecotype Columbia. Sequence analysis of the katD cDNA revealed an open reading frame of 2691bp [corrected], encoding a protein of 987 amino acids. Comparison of the nucleotide sequences of katD genomic and cDNA clones revealed the presence of 18 introns, 17 of which conform to the GU-AG rule. The central region of the KatD polypeptide exhibits substantial amino acid sequence homology to the motor domain of kinesin heavy chains, although the motor domain of KatD appears to be phylogenetically distant from those of other KLPs in plants. The amino-terminal region of KatD shares marked sequence similarity with the calponin homology domain, whereas the approximately 240-residue carboxyl-terminal region shows no significant homology to other known proteins. The predicted secondary structure of KatD revealed the lack of an alpha-helical coiled coil structure typical of kinesin heavy chains, suggesting that KatD may function as a monomeric motor. A recombinant truncated KatD protein containing the putative motor domain was shown both to bind to mammalian microtubules in a manner dependent on a non-hydrolyzable ATP analog, and to possess microtubule-dependent ATPase activity. Immunoblot and Northern blot analyses showed that both KatD protein and mRNA are expressed specifically in floral tissues. These results suggest that the structurally distinct KatD protein functions as a floral tissue-specific motor protein.  相似文献   

9.
A 1.8 kb HindIII DNA fragment containing the secY gene of alkalophilic Bacillus sp. C125 has been cloned into plasmid pUC119 using the B. subtilis secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained one complete ORF and parts of two other ORFs. The similarity of these ORFs to the sequences of the B. subtilis proteins indicated that they were the genes for ribosomal protein L15-SecY-adenylate kinase, in that order. The gene product of the alkalophilic Bacillus sp. C125 secY homologue was composed of 431 amino acids and its M(r) value has been calculated to be 47,100. The distribution of hydrophobic amino acids in the gene product suggested that the protein was a membrane integrated protein with ten transmembrane segments. The total amino acid sequence of alkalophilic Bacillus sp. C125 secY homologue showed 69.7% homology with that of B. subtilis secY. Regions of remarkably high homology (78% identity) were present in transmembrane regions, and cytoplasmic domains (73% identity) with less homologous regions present in extracellular domains (43% identity).  相似文献   

10.
通过生物信息学分析和生物学试验获得了家蚕糖转运蛋白基因BmST2(GenBank登录号:GQ871755),基因位于家蚕27号染色体,开放阅读框(ORF)长1398 bp,编码465个氨基酸,预测蛋白序列有典型的Sugar_tr结构域和11个疏水的跨膜结构域,与家蚕BmST1蛋白相似性和一致性分别达79%和64%,与登录号为EAT47626、EDS35465、EAA11457和EFA05337的同源蛋白相似性在50%以上。RT-PCR检测基因在5龄第3天家蚕幼虫的9种组织中转录活性,结果显示,BmST2基因除在脂肪体没有表达外,其他组织均有表达。最后成功构建了基因的酵母穿梭表达质粒pG-BKT7-BmST2。  相似文献   

11.
白色念珠菌在不同的生长条件下能发生显著的形态变化 ,这种变化由多种调控因子与信号转导途径所调控。酿酒酵母的G1期细胞周期蛋白Cln1和Cln2参与其形态发生 ,cln1/cln1、cln2 /cln2双缺失株不能形成菌丝。把白色念珠菌基因组文库导入cln1/cln1、cln2 /cln2缺失株 ,筛选能校正菌丝形成缺陷的基因 ,分离得到白色念珠菌中的CaBEM 1基因。从核苷酸序列推导 ,CaBEM1编码一种 6 32个氨基酸的蛋白质 ,氨基酸序列分析表明在其N端有 2个SH3结构域 ,中部有 1个PX结构域 ,C端有 1个PB1结构域 ;CaBem1的氨基酸序列与酿酒酵母的Bem1同源性达 38% ,与裂殖酵母的Scd2同源性达 32 %。在酿酒酵母的缺失株中异源表达CaBEM1,能够部分校正它们在氮源缺乏条件下的菌丝形成缺陷。这种菌丝形成的校正作用绕过MAPK途径和cAMP/PKA途径 ,表明CaBem1在菌丝形成中的作用可能位于这两条信号转导途径的下游  相似文献   

12.
KCBP (kinesin-like calmodulin [CaM]-binding proteins), a member of the carboxy-terminal kinesin-like proteins (KLPs), is unique among KLPs in having a CaM-binding domain (CBD). CaM-binding KLPs have been identified from flowering plants and the sea urchin. To determine if CaM-binding KLP is present in phylogenetically divergent protists, we probed Cyanophora paradoxa protein extract with affinity-purified KCBP antibody. The KCBP antibody detected a polypeptide with a molecular mass of about 133 kDa in the crude extract. In a CaM–Sepharose column-purified fraction, the same band was detected with both KCBP antibody and biotinylated CaM. In a PCR reaction using degenerate primers corresponding to two conserved regions in the motor domain of kinesin, a 500-bp fragment (CpKLP1) was amplified from a cDNA library. The predicted amino acid sequence of CpKLP1 showed significant sequence similarity with KCBPs. In phylogenetic analysis, CpKLP1 fell into the KCBP group within the carboxy-terminal subfamily. These biochemical data, sequence, and phylogenetic analysis strongly suggest the presence of a calmodulin-binding KLP in C. paradoxa and that it is related to Ca2+/calmodulin regulated KLPs from plants. This is the first report on identification of any motor protein in C. paradoxa. Furthermore, our data suggest that CaM-binding KLPs may have evolved long before the divergence of plants and animals.  相似文献   

13.
Nucleotide sequencing of the SalI j region of the virulent Malawi (LIL20/1) strain of African swine fever virus (ASFV) identified an open reading frame (ORF), designated j9L, with extensive similarity to the family of protein kinases. This ORF encodes a 35.1-kDa protein of 299 amino acids which shares 24.6% amino acid identity with the human pim-1 proto-oncogene and 21.0% identity with the vaccinia virus B1R-encoded protein kinase. The ASFV ORF contains the motifs characteristic of serine-threonine protein kinases, with the exception of the presumed ATP-binding site, which is poorly conserved. The ORF was expressed to high levels in Escherichia coli, and the recombinant enzyme phosphorylated a calf thymus histone protein on serine residues in vitro. An antibody raised to an amino-terminal peptide of the ASFV protein kinase was reactive with the recombinant protein in Western immunoblot analyses and was used to demonstrate the presence of the protein kinase in ASF virions.  相似文献   

14.
Eukaryotic RNases H from Saccharomyces cerevisiae , Schizosaccharomyces pombe and Crithidia fasciculata , unlike the related Escherichia coli RNase HI, contain a non-RNase H domain with a common motif. Previously we showed that S.cerevisiae RNase H1 binds to duplex RNAs (either RNA-DNA hybrids or double-stranded RNA) through a region related to the double-stranded RNA binding motif. A very similar amino acid sequence is present in caulimovirus ORF VI proteins. The hallmark of the RNase H/caulimovirus nucleic acid binding motif is a stretch of 40 amino acids with 11 highly conserved residues, seven of which are aromatic. Point mutations, insertions and deletions indicated that integrity of the motif is important for binding. However, additional amino acids are required because a minimal peptide containing the motif was disordered in solution and failed to bind to duplex RNAs, whereas a longer protein bound well. Schizosaccharomyces pombe RNase H1 also bound to duplex RNAs, as did proteins in which the S.cerevisiae RNase H1 binding motif was replaced by either the C.fasciculata or by the cauliflower mosaic virus ORF VI sequence. The similarity between the RNase H and the caulimovirus domain suggest a common interaction with duplex RNAs of these two different groups of proteins.  相似文献   

15.
白念珠菌的致病性与其形态转变相关,白念珠菌的形态转换受各种外界信号和细胞内信号转导途径的调控。转录因子Flo8在酿酒酵母形态发生中起重要作用,我们将白念珠菌基因组文库导入flo8缺失株中,筛选能够校正flo8缺失株侵入生长缺陷的基因,分离得到一个与酿酒酵母蛋白磷酸酯酶甲基酯酶PPEl同源的基因,命名为CaPPEl。CaPPEl的基因编码区全长1083bp,推测编码一个361氨基酸的蛋白。在单倍体酿酒酵母中,CaPPEl基因的表达可以部分回复flo8缺失株的侵入生长缺陷,但是在MAPK途径缺失株中不能进行侵入生长。在双倍体酿酒酵母中,CaPPEl基因的表达可以部分激活MAPK途径成员缺失株的菌丝生长缺陷,但却只能在flo8缺失株中产生微弱的激活作用。结果表明CaPpel在酿酒酵母的假菌丝生长和侵入生长中参与的信号转导途径不同。  相似文献   

16.
17.
The MukB protein from Escherichia coli has a domain structure that is reminiscent of the eukaryotic motor proteins kinesin and myosin: N-terminal globular domains, a region of coiled-coil, and a specialised C-terminal domain. Sequence alignment of the N-terminal domain of MukB with the kinesin motor domain indicated an approximately 22% sequence identity. These observations raised the possibility that MukB might be a prokaryotic motor protein and, due to the sequence homology shared with kinesin, might bind to microtubules (Mts). We found that a construct encoding the first 342 residues of MukB (Muk342) binds specifically to Mts and shares a number of properties with the motor domain of kinesin. Visualisation of the Muk342 decorated Mt complexes using negative stain electron microscopy indicated that the Muk342 smoothly decorates the outside of Mts. Biochemical data demonstrate that Muk342 decorates Mts with a binding stoichiometry of one Muk342 monomer per tubulin monomer. These findings strongly suggest that MukB has a role in force generation and that it is a prokaryotic homologue of kinesin and myosin.  相似文献   

18.
白念珠茵的致病性与其形态转变相关,白念珠茵的形态转换受各种外界信号和细胞内信号转导途径的调控。转录因子Flo8在酿酒酵母形态发生中起重要作用,我们将白念珠茵基因组文库导入flo8缺失株中,筛选能够校正flo8缺失株侵入生长缺陷的基因,分离得到一个与酿酒酵母蛋白磷酸酯酶甲基酯酶PPEI同源的基因,命名为CaPPEl。CaPPEl的基因编码区全长1083bp,推测编码一个361氨基酸的蛋白。在单倍体酿酒酵母中,CaPPE1基因的表达可以部分回复flo8缺失株的侵入生长缺陷,但是在MAPK途径缺失株中不能进行侵入生长。在双倍体酿酒酵母中,CaPPEl基因的表达可以部分激活MAPK途径成员缺失株的茵丝生长缺陷,但却只能在flo8缺失株中产生微弱的激活作用。结果表明CaPpel在酿酒酵母的假茵丝生长和侵入生长中参与的信号转导途径不同。  相似文献   

19.
The proteolytic potential of the pathogenic fungus Candida albicans was evaluated by the identification and functional characterization of a peptidolytic enzyme isolated from the cell wall of the microorganism. Determination of basic structural and kinetic data identified a neutral arginine/alanine/leucine-specific metallo-aminopeptidase of unknown function termed CaApe2, which is encoded by ORF CaO19.5197 (GenBank RefSeq XM_705313 ). Mass spectrometric tryptic peptide analysis and N-terminal protein sequencing revealed serine-88 to represent the N-terminus of CaApe2. Taking into account the results of DNA and protein sequence analysis including inspection of the genomic region upstream of ORF CaO19.5197, the gene CaAPE2 is likely to consist of two exons linked by a phase-2 intron with exons 1 and 2 encoding a signal peptide and the amino acids 88–954 of ORF CaO19.5197, respectively. The isolated CaApe2 protein shares an equally high similarity with the gene products ScAap1 and ScApe2, suggesting duplication of a phylogenetically ancient precursor gene in Saccharomyces cerevisiae . The observed failure to cleave human type-I and type-IV collagen in vitro challenges a direct role that secreted CaApe2 might play in the degradation of extracellular matrix components during host colonization, but does not exclude per se a contribution of the aminopeptidase to the pathogenicity of C. albicans .  相似文献   

20.
Kinesin family in murine central nervous system   总被引:27,自引:15,他引:12       下载免费PDF全文
《The Journal of cell biology》1992,119(5):1287-1296
In neuronal axons, various kinds of membranous components are transported along microtubules bidirectionally. However, only two kinds of mechanochemical motor proteins, kinesin and brain dynein, had been identified as transporters of membranous organelles in mammalian neurons. Recently, a series of genes that encode proteins closely related to kinesin heavy chain were identified in several organisms including Schizosaccharomyces pombe, Aspergillus niddulans, Saccharomyces cerevisiae, Caenorhabditus elegans, and Drosophila. Most of these members of the kinesin family are implicated in mechanisms of mitosis or meiosis. To address the mechanism of intracellular organelle transport at a molecular level, we have cloned and characterized five different members (KIF1-5), that encode the microtubule-associated motor domain homologous to kinesin heavy chain, in murine brain tissue. Homology analysis of amino acid sequence indicated that KIF1 and KIF5 are murine counterparts of unc104 and kinesin heavy chain, respectively, while KIF2, KIF3, and KIF4 are as yet unidentified new species. Complete amino acid sequence of KIF3 revealed that KIF3 consists of NH2-terminal motor domain, central alpha-helical rod domain, and COOH-terminal globular domain. Complete amino acid sequence of KIF2 revealed that KIF2 consists of NH2-terminal globular domain, central motor domain, and COOH-terminal alpha-helical rod domain. This is the first identification of the kinesin-related protein which has its motor domain at the central part in its primary structure. Northern blot analysis revealed that KIF1, KIF3, and KIF5 are expressed almost exclusively in murine brain, whereas KIF2 and KIF4 are expressed in brain as well as in other tissues. All these members of the kinesin family are expressed in the same type of neurons, and thus each one of them may transport its specific organelle in the murine central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号