首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ionizing radiation is an important genotoxic agent. Protecting against this form of toxicant, especially by a dietary component, has several potential applications. In the present study, we have examined the ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, to inhibit radiation-induced DNA damage measured as strand breaks under in vitro, ex vivo and in vivo conditions besides the possible mechanisms behind the observed protection. Our study showed that there was a concentration-dependent inhibition of the disappearance of super-coiled (ccc) form of plasmid pBR322 (in vitro) upon exposure to 50 Gy of gamma-radiation. Presence of 0.5 mM vanillin has a dose-modifying factor (DMF) of 6.75 for 50% inactivation of ccc form. Exposure of human peripheral blood leucocytes (ex vivo) to gamma-radiation causes strand breaks in the cellular DNA, as assessed by comet assay. When leucocytes were exposed to 2 Gy of gamma-radiation there was an increase in parameters of comet assay such as %DNA in tail, tail length, 'tail moment' and 'Olive tail moment'. The presence of 0.5 mM vanillin during irradiation significantly reduced these parameters. Damage to DNA in mouse peripheral blood leucocytes after whole-body exposure of mice (in vivo) to gamma-radiation was studied at 1 and 2 h post-irradiation. There was recovery of DNA damage in terms of the above-mentioned parameters at 2 h post-irradiation. This was more than that observed at 1 h. The recovery was more in vanillin treated mice. Hence our studies showed that vanillin offers protection to DNA against radiation-induced damage possibly imparting a role other than modulation of DNA repair. To examine the possible mechanisms of radioprotection, in terms of radiation-derived radicals, we carried out the reaction of vanillin with ABTS*(+) radical spectrophotometrically besides with DNA peroxyl and carbonyl radicals by using pulse radiolysis. Our present investigations show that vanillin has ability to protect against DNA damage in plasmid pBR322, human and mouse peripheral blood leucocytes and splenic lymphocytes besides enhancing survival in splenic lymphocytes against gamma-radiation, and that the possible mechanism may involve scavenging of radicals generated during radiation, apart from modulation of DNA repair observed earlier.  相似文献   

4.
5.
We reported previously that a radiation-induced adaptive response existed in the late period of embryogenesis, and that radiation-induced apoptosis in the predigital regions was responsible for digital defects in embryonic ICR mice. To investigate the possible involvement of the Trp53 gene and radiation-induced apoptosis in radiation-induced adaptive responses in embryogenesis, the present study was conducted using Trp53 wild-type (Trp53(+/+)) and Trp53 heterozygous (Trp53(+/-)) embryonic mice of the C57BL/6 strain. The existence of a radioadaptive response in the Trp53(+/+) embryonic mice was demonstrated by irradiating the embryos with 5 or 30 cGy on embryonic day 11 prior to a challenging irradiation at 3 Gy on embryonic day 12. The two conditioning doses at 5 and 30 cGy significantly suppressed the induction of apoptosis by the challenging dose in the predigital regions of limb buds in the Trp53(+/+) embryonic mice, while no such effect was found in the Trp53(+/-) embryonic mice. These findings indicate that induction of a radioadaptive response in embryogenesis is related to Trp53 gene status and the occurrence of radiation-induced apoptosis.  相似文献   

6.
Teratogenesis induced by radiation in fetal mice has been closely linked to Trp53-dependent apoptosis. This study examined teratogenesis in tails and limb digits of fetal mice with varying Trp53 status after a 4-Gy radiation exposure, with and without a prior 40.5 degrees C, 60-min heat stress. Irradiation earlier in gestation (day 11) produced greater effects than later (day 12) exposure, but in both cases the maximum teratogenic effect of radiation occurred in Trp53 normal fetuses, the minimum in Trp53 null fetuses, and intermediate effects in Trp53 heterozygotes, indicating dominance of Trp53-dependent apoptosis. Heat stress 24 h prior to irradiation on day 11 did not alter the teratogenic effects in Trp53 normal or heterozygous fetuses, but it reduced effects in the Trp53 null fetuses. Conversely, heat stress immediately before irradiation on day 11 amplified teratogenesis in Trp53 null fetuses, still with only a small or no effect on fetuses with full or partial Trp53 function, respectively. These results indicate little effect of mild heat on Trp53-dependent apoptosis after irradiation, but they also suggest heat-induced amplification of Trp53-independent processes that led to apoptosis when heat was delivered near the time of radiation exposure, and heat-induced protection of that process when sufficient expression time was allowed. However, Trp53-dependent apoptosis, when functional, acted as the ultimate determinant of radiation-induced teratogenic effects during early organogenesis. On gestation day 12, radiation effects were diminished, but heat stress 24 h prior to radiation exposure had a large amplifying effect in Trp53 normal or heterozygous fetuses. In the absence of functional Trp53, the sensitizing effect of the heat was diminished. The results may suggest that at later times in organ development, DNA repair is more active, allowing some cells to escape radiation-induced Trp53-dependent apoptosis. However, heat may be able to significantly inhibit this active repair and increase the teratogenic effect of radiation. A diminished effect in the absence of functional Trp53 is consistent with an influence of heat on inhibiting DNA repair, but with a diminished probability of apoptosis.  相似文献   

7.
8.
除草剂乐草隆对红鲫的遗传毒性研究   总被引:15,自引:2,他引:13  
目的 探讨除草剂乐草隆对红鲫的遗传毒性。方法 用单细胞凝胶电泳检测不同浓度的乐草隆对红鲫外周血淋巴细胞DNA的损伤作用。结果 乐草隆致毒红鲫的淋巴细胞DNA的迁移度均较阴性对照组高 (P<0 0 5 ) ,在一定浓度范围内 (0~ 7 0 0mg L)DNA损伤程度与浓度呈正相关 (r=0 982 ,P <0 0 1)。在 12h、2 4h、4 8h、96h、10d实验组DNA损伤程度均有增强的趋势。结论 乐草隆对红鲫具有一定的遗传毒性  相似文献   

9.
The tumor suppressor gene, TP53, plays a major role in surveillance and repair of radiation-induced DNA damage. In multiple cell types, including mammary epithelial cells, abrogation of p53 (encoded by Trp53) function is associated with increased tumorigenesis. We examined gamma-irradiated BALB/c-Trp53(+/+) and -Trp53(-/-) female mice at five stages of post-natal mammary gland development to determine whether radiation-induced p53 activity is developmentally regulated. Our results show that p53-mediated responses are attenuated in glands from irradiated virgin and lactating mice, as measured by induction of p21/WAF1 (encoded by Cdkn1a) and apoptosis, while irradiated early- and mid-pregnancy glands exhibit robust p53 activity. There is a strong correlation between p53-mediated apoptosis and the degree of cellular proliferation, independent of the level of differentiation. In vivo, proliferation is intimately influenced by steroid hormones. To determine whether steroid hormones directly modulate p53 activity, whole organ cultures of mammary glands were induced to proliferate using estrogen plus progesterone or epidermal growth factor plus transforming growth factor-alpha and p53 responses to gamma-irradiation were measured. Regardless of mitogens used, proliferating mammary epithelial cells show comparable p53 responses to gamma-irradiation, including expression of nuclear p53 and p21/WAF1 and increased levels of apoptosis, compared to non-proliferating irradiated control cultures. Our study suggests that differences in radiation-induced p53 activity during post-natal mammary gland development are influenced by the proliferative state of the gland, and may be mediated indirectly by the mitogenic actions of steroid hormones in vivo.  相似文献   

10.
The DNA damaging effects of the carbamate pesticide carbofuran and its four metabolites (carbofuranphenol, 3-ketocarbofuran, 3-hydrocarbofuran and nitrosocarbofuran) on mice were evaluated by single cell gel electrophoresis (SCGE) assay and micronucleus test. KM mice were exposed to test compounds with different doses of 0.1, 0.2 and 0.4mg/kg through in-traperitoneal injection two times with an internal of 24 h, and then killed by cervical dislocation 6 h after the second injection. In SCGE assay, isolated mice peripheral blood lymphocytes were employed to determine DNA damaging degree after a 1 h treatment by test compounds and a following electrophoresis. Carbofuran and carbofuranphenol showed negative results in both test and had no obvious toxicity. 3-hydrocarbofuran and nitrosocarbofuran were positive. 3-ketocarbofuran could not induce micronucleus formation but caused significant DNA migration in SCGE test. These tests revealed that 3-ketocarbofuran, 3-hydrocarbofuran and nitrosocarbofuran are pote  相似文献   

11.
The DNA damaging effects of the carbamate pesticide carbofuran and its four metabolites (carbofuranphenol, 3-ketocarbofuran, 3-hydrocarbofuran and nitrosocarbofuran) on mice were evaluated by single cell gel electrophoresis (SCGE) assay and micronucleus test. KM mice were exposed to test compounds with different doses of 0.1, 0.2 and 0.4mg/kg through intraperitoneal injection two times with an internal of 24 h, and then killed by cervical dislocation 6 h after the second injection. In SCGE assay, isolated mice peripheral blood lymphocytes were employed to determine DNA damaging degree after a 1 h treatment by test compounds and a following electrophoresis. Carbofuran and carbofuranphenol showed negative results in both test and had no obvious toxicity. 3-hydrocarbofuran and nitrosocarbofuran were positive.3-ketocarbofuran could not induce micronucleus formation but caused significant DNA migration in SCGE test. These tests revealed that 3-ketocarbofuran, 3-hydrocarbofuran and nitrosocarbofuran are potential mutagesis and further research is needed.  相似文献   

12.
We reported previously that in utero radiation-induced apoptosis in the predigital regions of embryonic limb buds was responsible for digital defects in mice. To investigate the possible involvement of the Trp53 gene, the present study was conducted using embryonic C57BL/6J mice with different Trp53 status. Susceptibility to radiation-induced apoptosis in the predigital regions and digital defects depended on both Trp53 status and the radiation dose; i.e., Trp53 wild-type (Trp53(+/+)) mice appeared to be the most sensitive, Trp53 heterozygous (Trp53(+/-)) mice were intermediate, and Trp53 knockout (Trp53(-/-)) mice were the most resistant. These results indicate that induction of apoptosis and digital defects by prenatal irradiation in the later period of organogenesis are mediated by the Trp53 gene. These findings suggest that the wild-type Trp53 gene may be an intrinsic genetic susceptibility factor that is responsible for certain congenital defects induced by prenatal irradiation.  相似文献   

13.
The DNA damaging effects of the carbamate pesticide carbofuran and its four metabolites (carbofuranphenol, 3-ketocarbofuran, 3-hydrocarbofuran and nitrosocarbofuran) on mice were evaluated by single cell gel electrophoresis (SCGE) assay and micronucleus test. KM mice were exposed to test compounds with different doses of 0.1, 0.2 and 0.4mg/kg through intraperitoneal injection two times with an internal of 24 h, and then killed by cervical dislocation 6 h after the second injection. In SCGE assay, isolated mice peripheral blood lymphocytes were employed to determine DNA damaging degree after a 1 h treatment by test compounds and a following electrophoresis. Carbofuran and carbofuranphenol showed negative results in both test and had no obvious toxicity. 3-hydrocarbofuran and nitrosocarbofuran were positive. 3-ketocarbofuran could not induce micronucleus formation but caused significant DNA migration in SCGE test. These tests revealed that 3-ketocarbofuran, 3-hydrocarbofuran and nitrosocarbofuran are potential mutagesis and further research is needed.  相似文献   

14.
Human biomonitoring, as a tool to identify health risk from environmental exposures, has gained increasing interest especially in the areas of cancer risk assessment and response to therapy. Chromosome aberrations resulting from direct DNA breakage or from inhibition of DNA repair or synthesis, as measured in peripheral blood lymphocytes, have been used successfully in the assessment of environmental health. Susceptibility to the induction of genotoxicity has been evaluated by the use of an in vitro challenge dose of UV or X-rays. In this report, DNA damage was analyzed with the use of single cell gel electrophoresis (SCGE) assay in healthy donors and cancer patients. Studies have shown a good correlation between DNA damage induced in vivo or in vitro and cytogenetic measures. Results from studies on susceptibilities and repair competence in 475 controls, exposed workers and cancer patients are discussed. The possible effects of exposures and influence of the diet and other confounding factors are shown. The prospective use of a challenging dose of radiation combined with the SCGE assay as a predictive assay is suggested and the limitations are discussed.  相似文献   

15.
Mutational hot spots in the human p53 gene are well established in tumors in the human population and are frequently negative prognosticators of the clinical outcome. We previously developed a mouse model of skin cancer with mutations in the xeroderma pigmentosum group C gene (Xpc). UVB radiation-induced skin cancer is significantly enhanced in these mice when they also carry a mutation in one copy of the Trp53 gene (Xpc-/-Trp53+/-). Skin tumors in these mice often contain inactivating mutations in the remaining Trp53 allele and we have previously reported a novel mutational hot spot at a non-dipyrimidine site (ACG) in codon 122 of the Trp53 gene in the tumors. Here we show that this mutation is not a hot spot in Xpa or Csa mutant mice. Furthermore, the mutation in codon T122 can be identified in mouse skin DNA from (Xpc-/-Trp53+/-) mice as early as 2 weeks after exposure to UVB radiation, well before histological evidence of dysplastic or neoplastic changes. Since this mutational hot spot is not at a dipyrimidine site and is apparently Xpc-specific, we suggest that some form of non-dipyrimidine base damage is normally repaired in a manner that is distinct from conventional nucleotide excision repair, but that requires XPC protein.  相似文献   

16.
Protection of DNA from gamma-radiation induced strand breaks by Epicatechin   总被引:2,自引:0,他引:2  
Epicatechin (EC), a polyphenolic antioxidant compound found in tea, apples and chocolate offered protection to DNA against ionizing radiation induced damages. Under in vitro conditions of radiation exposure, plasmid pBR322 DNA was protected by EC in a concentration dependent manner. The dose modifying factor for 0.2 mM EC for 50% protection of the plasmid DNA was found to be 6.0. EC when administered to mice 1 h prior to exposure to 4 Gy gamma-radiation protected cellular DNA against radiation-induced strand breaks in peripheral blood leukocytes, as revealed in alkaline comet assay studies. Thus, EC was found to protect DNA from gamma-radiation indiced strand breaks under in vitro as well as in vivo conditions of radiation exposure.  相似文献   

17.
The comet assay, also called the single-cell gel electrophoresis (SCGE) assay, is a rapid and sensitive method for the detection of DNA damage (strand breaks and alkali-labile sites) in individual cells. The assay is based on the embedding of cells in agarose, their lysis in alkaline buffer and finally subjection to an electric current. In the present study, alkaline SCGE was used to evaluate the extent of primary DNA damage and DNA repair in peripheral blood lymphocytes of workers employed in pesticide production. After the period of high pesticide exposure, lymphocytes of the occupationally exposed workers manifested increased tail length and tail moment compared to the control group. After the workers spent 6 months out of the pesticide exposure zone, both endpoints were still above that of the control but significantly decreased as compared to the results of the first analysis.  相似文献   

18.
Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.  相似文献   

19.
Therapeutic irradiation of the brain can cause a progressive cognitive dysfunction that may involve defects in neurogenesis. In an effort to understand the mechanisms underlying radiation-induced stem cell dysfunction, neural precursor cells isolated from the adult rat hippocampus were analyzed for acute (0-24 h) and chronic (3-33 days) changes in apoptosis and reactive oxygen species (ROS) after exposure to X rays. Irradiated neural precursor cells exhibited an acute dose-dependent apoptosis accompanied by an increase in ROS that persisted over a 3-4-week period. The radiation effects included the activation of cell cycle checkpoints that were associated with increased Trp53 phosphorylation and Trp53 and p21 (Cdkn1a) protein levels. In vivo, neural precursor cells within the hippocampal dentate subgranular zone exhibited significant sensitivity to radiation. Proliferating precursor cells and their progeny (i.e. immature neurons) exhibited dose-dependent reductions in cell number. These reductions were less severe in Trp53-null mice, possibly due to the disruption of apoptosis. These data suggest that the apoptotic and ROS responses may be tied to Trp53-dependent regulation of cell cycle control and stress-activated pathways. The temporal coincidence between in vitro and in vivo measurements of apoptosis suggests that oxidative stress may provide a mechanistic explanation for radiation-induced inhibition of neurogenesis in the development of cognitive impairment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号