首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou JH  Yu DV  Cheng J  Shapiro DJ 《Steroids》2007,72(11-12):765-777
Tamoxifen (Tam), and its active metabolite, 4-hydroxytamoxifen (OHT), compete with estrogens for binding to the estrogen receptor (ER). Tam and OHT can also induce ER-dependent apoptosis of cancer cells. 10-100nM OHT induces ER-dependent apoptosis in approximately 3 days. Using HeLaER6 cells, we examined the role of OHT activation of signal transduction pathways in OHT-ER-mediated apoptosis. OHT-ER activated the p38, JNK and ERK1/2 pathways. Inhibition of p38 activation with SB203580, or RNAi-knockdown of p38alpha, moderately reduced OHT-ER mediated cell death. A JNK inhibitor partly reduced cell death. Surprisingly, the MEK1/2 inhibitor, PD98059, completely blocked OHT-ER induced apoptosis. EGF, an ERK1/2 activator, enhanced OHT-induced apoptosis. OHT induced a delayed and persistent phosphorylation of ERK1/2 that persisted for >80h. Addition of PD98059 as late as 24h after OHT largely blocked OHT-ER mediated apoptosis. The antagonist, ICI 182,780, blocked both the long-term OHT-mediated phosphorylation of ERK1/2 and OHT-induced apoptosis. Our data suggests that the p38 and JNK pathways, which often play a central role in apoptosis, have only a limited role in OHT-ER-mediated cell death. Although rapid activation of the ERK1/2 pathway is often associated with cell growth, persistent activation of the ERK1/2 pathway is essential for OHT-ER induced cell death.  相似文献   

2.
3.
17beta-Estradiol (E(2)) or the antiestrogen, 4-hydroxytamoxifen (OHT), induce apoptosis in stably transfected estrogen receptor (ER)-positive HeLa-ER5 cells. p38 mitogen-activated protein kinase is implicated in cellular processes involving apoptosis. The p38 kinase inhibitor, SB203580, partially protects HeLa-ER5 cells against apoptosis induced by E(2) or by OHT. E(2) induces the p38 pathway 12-36-fold in ER-positive cell lines, while OHT induces p38 activity 2-5-fold. In an ER-positive cell line selected for resistance to E(2)-induced apoptosis, E(2) no longer induced p38, and the ER no longer bound to the estrogen response element, while OHT induced both p38 and apoptosis. In cells selected for resistance to OHT-induced apoptosis, OHT no longer induced p38, while E(2) induced p38 and apoptosis, and transactivated an estrogen response element-containing reporter gene. In MCF-7 cells, whose growth is stimulated by estrogen, E(2) did not induce p38 or apoptosis, while OHT induced both p38 and apoptosis, and SB203580 protected against OHT-induced apoptosis. This work shows that E(2) and OHT activate the p38 pathway, suggests that they use different pathways for p38 activation, and links activation of the p38 pathway to apoptosis induced by E(2) and by OHT.  相似文献   

4.
The capability of 17beta-estradiol (E2) to induce the non-genomic activities of its receptors (ER alpha and ER beta) and to evoke different signaling pathways committed to the regulation of cell proliferation has been analyzed in different cell cancer lines containing transfected (HeLa) or endogenous (HepG2, DLD1) ER alpha or ER beta. In these cell lines, E2 induced different effects on cell growth/apoptosis in dependence of ER isoforms present. The E2-ER alpha complex rapidly activated multiple signal transduction pathways (i.e., ERK/MAPK, PI3K/AKT) committed to both cell cycle progression and apoptotic cascade prevention. On the other hand, the E2-ER beta complex induced the rapid and persistent phosphorylation of p38/MAPK which, in turn, was involved in caspase-3 activation and cleavage of poly(ADP-ribose)polymerase, driving cells into the apoptotic cycle. In addition, the E2-ER beta complex did not activate any of the E2-ER alpha-activated signal molecules involved in cell growth. Taken together, these results demonstrate the ability of ER beta isoform to activate specific signal transduction pathways starting from plasma membrane that may justify the effect of E2 in inducing cell proliferation or apoptosis in cancer cells. In particular this hormone promotes cell survival through ER alpha non-genomic signaling and cell death through ER beta non-genomic signaling.  相似文献   

5.
Alterations in Ca2+ homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) cause ER stress that ultimately leads to programmed cell death. Recent studies have shown that ER stress triggers programmed cell death via an alternative intrinsic pathway of apoptosis that, unlike the intrinsic pathway described previously, is independent of Apaf-1 and cytochrome c. In the present work, we have used a set of complementary approaches, including two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and nano-liquid chromatography-electrospray ionization mass spectrometry with tandem mass spectrometry, RNA interference, co-immunoprecipitation, immunodepletion of candidate proteins, and reconstitution studies, to identify mediators of the ER stress-induced cell death pathway. Our data identify two molecules, valosin-containing protein and apoptosis-linked gene-2 (ALG-2), that appear to play a role in mediating ER stress-induced cell death.  相似文献   

6.
The induction of cell death by radiation has largely been attributed to pro-apoptotic mechanisms. Autophagy, an alternative form of programmed cell death, has recently been shown to contribute significantly to anti-neoplastic effects of radiation therapy. In light of this, ER stress has been shown to trigger both apoptosis and autophagy, and act as an important mediator linking the two programmed cell death pathways. Recent data reveal that ER stress leads to activation of autophagosome formation with LC3 conversion via either PERK-eIF2α pathway or IRE1-JNK pathway. In this focused review, we summarize the main molecular mediators that control cellular “switches” between apoptosis and autophagy pathways by utilizing radiation therapy as a model.  相似文献   

7.
In order to provide a global analysis of the effects of endocrine disruptors on the hormone cellular bioavailability, we combined 17beta-estradiol (E2) cellular flow studies with real-time PCR and Western blot expression measurements of genes involved in the hormone metabolism and excretion. Three endocrine disruptors commonly found in food were chosen for this study, which was conducted in the estrogen receptor (ER) negative hepatoblastoma HepG2 cell line: bisphenol A (BPA), genistein (GEN) and resveratrol (RES). We showed that 24h after a single dose treatment with genistein, resveratrol or bisphenol A, the expression of ATP-binding cassette transporters (the multidrug resistance or MDR, and the multidrug resistance associated proteins or MRP) uridine diphosphate-glucuronosyltransferases (UGT) and/or sulfotransferases (ST) involved in 17beta-estradiol elimination process were significantly modulated and that 17beta-estradiol cellular flow was modified. Resveratrol induced MDR1 and MRP3 expressions, bisphenol A induced MRP2 and MRP3 expressions, and both enhanced 17beta-estradiol efflux. Genistein, on the other hand, inhibited ST1E1 and UGT1A1 expressions, and led to 17beta-estradiol cellular retention. Thus, we demonstrate that bisphenol A, genistein and resveratrol modulate 17beta-estradiol cellular bioavailability in HepG2 and that these modulations most probably involve regulations of 17beta-estradiol phase II and III metabolism proteins. Up to now, the estrogenicity of environmental estrogenic pollutants has been based on the property of these compounds to bind to ERs. Our results obtained with ER negative cells provide strong evidence for the existence of ER-independent pathways leading to endocrine disruption.  相似文献   

8.
The selective ER modulator tamoxifen (TAM(1)) is the most widely used ER antagonist for treatment of women with hormone-dependent breast tumor. However, long-term treatment is associated with an increased risk of endometrial cancer. The aim of the present study was to demonstrate new insight into the role of G-protein coupled receptor 30 (GPR30) in the activity of TAM, which promoted endometrial cancer. In endometrial cancer cell lines ISHIKAWA and KLE, the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, 17β-estradiol (E2) and G1, a non-steroidal GPR30-specific agonist to promote cell proliferation and invasion was evaluated. All agents above induced high proliferative and invasive effects, while the down-regulation of GPR30 or the interruption of MAPK signal pathway partly or completely prevented the action of the regent. Moreover, the RNA and protein expression of GPR30 was up-regulated by G1, E2 or OHT in both cell lines. The present study provided a new insight into the mechanism involved in the agonistic activity exerted by TAM in the uterus.  相似文献   

9.
Cellular response to estrogen is mediated both by estrogen receptor (ER) binding to estrogen response element (ERE) and by non-nuclear actions like activation of signal transducing pathways. The main aims are to study if PI3K/Akt signaling pathway can be activated by 17beta-estradiol (E2) via non-nuclear action and to investigate the relationship of the action of E2 and ER in endometrial cancer cells expressing with different status of ER. The levels of phosphorylated Akt (Ser473) (P-Akt) and total Akt were examined by western blot and Akt kinase activity was measured in cells after stimulation with 1 microM E2 at different time points. Inhibitory role of LY294002 on activation of Akt induced by E2 and its estrogen antagonist, ICI182780 were also tested. P-Akt/Akt was used as a measure of activation of Akt. We found that maximum P-Akt/Akt and Akt kinase activity took place at 30 min in Ishikawa cells and 15 min in HEC-1A cells and the activation persisted for at least 2 h after stimulation with 1 microM E2. The activation of Akt elicited gradually with increasing doses of E2. PI3K inhibitor, LY294002, stopped the activating Akt in a dose-dependent manner and 50 microM LY294002 completely blocked the activation of Akt induced by E2. ICI182780 could block the activation of PI3K/Akt in ER-positive Ishikawa cells but not in HEC-1A cells with poor-expressed ER. This study demonstrated that E2 is able to promptly activate PI3K/Akt signal pathway in Ishikawa cells in an ER-dependent manner and ER-independent in HEC-1A cells. Blockage of PI3K/Akt cascade may become a potential and effective way to control endometrial carcinoma, especially in ER-negative cancers, which show no response to endocrinal therapy.  相似文献   

10.
Studies have shown salutary effects of 17beta-estradiol following trauma-hemorrhage on different cell types. 17beta-Estradiol also induces improved circulation via relaxation of the aorta and has an anti-apoptotic effect on endothelial cells. Because mitochondria play a pivotal role in apoptosis, we hypothesized that 17beta-estradiol will maintain mitochondrial function and will have protective effects against H(2)O(2)-induced apoptosis in endothelial cells. Endothelial cells were isolated from rats' aorta and cultured in the presence or absence of H(2)O(2), a potent inducer of apoptosis. In additional studies, endothelial cells were pretreated with 17beta-estradiol. Flow cytometry analysis revealed H(2)O(2)-induced apoptosis in 80.9% of endothelial cells; however, prior treatment of endothelial cells with 17beta-estradiol resulted in an approximately 40% reduction in apoptosis. This protective effect of 17beta-estradiol was abrogated when endothelial cells were cultured in the presence ICI-182780, indicating the involvement of estrogen receptor (ER). Fluorescence microscopy revealed a 17beta-estradiol-mediated attenuation of H(2)O(2)-induced mitochondrial condensation. Western blot analysis demonstrated that H(2)O(2)-induced cytochrome c release from mitochondrion to cytosol and the activation of caspase-9 and -3 were decreased by 17beta-estradiol. These findings suggest that 17beta-estradiol attenuated H(2)O(2)-induced apoptosis via ER-dependent activation of caspase-9 and -3 in rat endothelial cells through mitochondria.  相似文献   

11.
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition of proteasomal activity and triggering the accumulation of cytosolic Ca2+ by inhibiting the Ca2+-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic Mcl-1 protein.  相似文献   

12.
Accumulation of misfolded proteins and alterations in Ca2+ homeostasis in the endoplasmic reticulum (ER) causes ER stress and leads to cell death. However, the signal-transducing events that connect ER stress to cell death pathways are incompletely understood. To discern the pathway by which ER stress-induced cell death proceeds, we performed studies on Apaf-1(-/-) (null) fibroblasts that are known to be relatively resistant to apoptotic insults that induce the intrinsic apoptotic pathway. While these cells were resistant to cell death initiated by proapoptotic stimuli such as tamoxifen, they were susceptible to apoptosis induced by thapsigargin and brefeldin-A, both of which induce ER stress. This pathway was inhibited by catalytic mutants of caspase-12 and caspase-9 and by a peptide inhibitor of caspase-9 but not by caspase-8 inhibitors. Cleavage of caspases and poly(ADP-ribose) polymerase was observed in cell-free extracts lacking cytochrome c that were isolated from thapsigargin or brefeldin-treated cells. To define the molecular requirements for this Apaf-1 and cytochrome c-independent apoptosis pathway further, we developed a cell-free system of ER stress-induced apoptosis; the addition of microsomes prepared from ER stress-induced cells to a normal cell extract lacking mitochondria or cytochrome c resulted in processing of caspases. Immunodepletion experiments suggested that caspase-12 was one of the microsomal components required to activate downstream caspases. Thus, ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway.  相似文献   

13.
14.
He YY  He KL  Liu CL 《生理科学进展》2011,42(6):419-422
内质网应激是继死亡受体信号途径和线粒体途径之后新近发现的一条细胞凋亡通路,适度的应激可通过未折叠蛋白反应(UPR)产生细胞保护作用,但当应激过强或长时间不缓解时则会触发CHOP、ASK1/JNK及Caspases等通路诱导细胞凋亡。近年来研究发现内质网应激参与多种心血管疾病的发生发展,通过对相关通路的干预可以产生心肌细胞的保护作用,这有望成为防治心脏疾病的新靶点。  相似文献   

15.
Chondroptosis: A variant of apoptotic cell death in chondrocytes?   总被引:3,自引:0,他引:3  
Evidence has accumulated in recent years that programmed cell death (PCD) is not necessarily synonymous with the classical apoptosis, as defined by Kerr and Wyllie, but that cells use a variety of pathways to undergo cell death, which are reflected by different morphologies. Although chondrocytes with the hallmark features of classical apoptosis have been demonstrated in culture, such cells are extremely rare in vivo. The present review focuses on the morphological differences between dying chondrocytes and classical apoptotic cells. We propose the term 'chondroptosis' to reflect the fact that such cells are undergoing apoptosis in a non-classical manner that appears to be typical of programmed chondrocyte death in vivo. Unlike classical apoptosis, chondroptosis involves an initial increase in the endoplasmic reticulum and Golgi apparatus, reflecting an increase in protein synthesis. The increased ER membranes also segment the cytoplasm and provide compartments within which cytoplasm and organelles are digested. In addition, destruction occurs within autophagic vacuoles and cell remnants are blebbed into the lacunae. Together these processes lead to complete self-destruction of the chondrocyte as evidenced by the presence of empty lacunae. It is speculated that the endoplasmic reticulum pathway of apoptosis plays a greater role in chondroptosis than receptor-mediated or mitochondrial pathways and that lysosomal proteases are at least as important as caspases. Because chondroptosis does not depend on phagocytosis, it may be more advantageous in vivo, where chondrocytes are isolated within their lacunae. At present the initiation factors or the molecular pathways involved in chondroptosis remain unclear.  相似文献   

16.
Jeong SY  Seol DW 《BMB reports》2008,41(1):11-22
Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. Ca2+ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize Ca2+ signaling. Massive accumulation of Ca2+ in the mitochondria leads to apoptosis. The Ca2+ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.  相似文献   

17.
昆虫变态发育过程中的细胞自噬和凋亡   总被引:1,自引:0,他引:1  
在昆虫变态期,幼虫组织发生退化或消亡,原因在于蜕皮甾醇激素(ecdysteroid),即通常所说的蜕皮激素,诱导这些组织的细胞发生了自噬(autophagy)和凋亡(apoptosis)的程序性细胞死亡(programmed cell death,PCD)。一般情况下,自噬途径构成一种饥饿应激适应性以避免细胞的死亡,表现为低水平Cvt泡(Cvt vesicle)和自噬体(autophagosome)对部分胞质溶胶、蛋白聚集体和细胞器的吞噬和降解。昆虫进入变态发育时,由于蜕皮激素的激活,由遗传级联系统调控的PCD机制被启动,低水平的常态自噬转入高水平的自噬并同时诱发凋亡,细胞进入不可逆的死亡,导致幼虫组织在变态期退化或消亡。对果蝇Drosophila变态期PCD机制中最重要的发现是:(1)在自噬发生的PI3KⅠ- Tor 和 PI3KⅢ的分子通路中,由自噬相关蛋白Atg1引发的高水平自噬能够诱导凋亡;(2)蜕皮激素诱导表达的βFTZ-F1,E93,BR-C,E74A等转录因子不但激活凋亡的Caspases通路,还能诱导自噬的发生。  相似文献   

18.
17beta-estradiol exerts an antiapoptotic action in skeletal muscle cells through extranuclear ERalpha and beta. This protective action, mainly involves a non-genomic mechanism of ERK1/2 and PI3K/Akt activation and BAD phosphorylation. ERbeta plays a major role in the inhibition of apoptosis by 17beta-estradiol at the level of mitochondria, whereas ERalpha and ERbeta mediate the activation of Akt to the same extent, suggesting differential involvement of ER isoforms depending on the step of the apoptotic/survival pathway involved. The myopathies associated to estrogen deficit states may be related to the mechanisms by which estrogen regulates apoptosis.  相似文献   

19.
Pericontusional zone (PCZ) of traumatic cerebral contusion is a target of pharmacological intervention. It is well studied that 17beta-estradiol has a protective role in ischemic brain injury, but its role in brain protection of traumatic brain damage deserves further investigation, especially in pericontusional zone. Here we show that 17beta-estradiol enhances the protein expression and mRNA induction of estrogen alpha receptor (ERalpha) and prevents from programmed cell death in cortical pericontusional zone. ERalpha specific antagonist blocks this protective effect of 17beta-estradiol. Caspase-3 activation occurs in cortical pericontusional zone of the oil-treated injured rat brain and its activation is inhibited by 17beta-estradiol treatment. Additionally, ERalpha specific antagonist reverses this inhibition. Pan-caspase inhibitor also protect cortical pericontusional zone from programmed cell death. Our present study indicates 17beta-estradiol protects from programmed cell death in cortical pericontusional zone via enhancement of ERalpha and decrease of caspase-3 activation.  相似文献   

20.
Poor survival of mesenchymal stem cells (MSCs) compromised the efficacy of stem cell therapy for myocardial infarction. The increase of exogenous reactive oxygen species (ROS) in infracted heart is one of the important factors that challenged the survival of donor MSCs. In the study we aimed to evaluate the effect of oxidative stress on the cell death of MSCs and investigate its mechanisms in order to help with the identification of new biological compounds to reduce donor cells damage. Apoptosis of MSCs were evaluated with Hoechst 33342 staining and flow cytometry analysis. The mitochondrial membrane potential of MSCs was analyzed with JC‐1 staining. Signaling pathways involved in H2O2 induced apoptosis were analyzed with Western blot. H2O2 induced apoptosis of MSCs in a dose‐ and time‐dependent manner. H2O2 induced apoptosis of MSCs via both endoplasmic reticulum (ER) and mitochondrial pathways rather than extrinsic apoptosis pathway. H2O2 caused transient rather than sustained activation of p38 and JNK with no effect on ERK1/2 pathway. P38 was involved in the regulation of early apoptosis of MSCs while JNK was involved in the late apoptosis. P38 directed both ER stress and mitochondria death pathway in the early apoptosis. In conclusion, exogenous ROS was a major factor to induce apoptosis of MSCs. Both ER stress and mitochondria death pathway were involved in the apoptosis of MSCs. H2O2 activated p38 that directed the above two pathways in the regulation of early apoptosis of MSCs while JNK was involved in the late apoptosis of MSCs. J. Cell. Biochem. 111: 967–978, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号