首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered to native cartilage integration and cellular processes.  相似文献   

2.
目的:本研究旨在通过不同方法修饰羟基磷灰石纳米颗粒并检测其稳定性及分散性。方法:首先采用水合热合成法制备羟基磷灰石纳米颗粒,然后用透射电镜(TEM)和场发射扫描电镜(SEM)对其表面形态结构进行表征。我们首次用溴化十六烷三甲基铵(CTAB),PEG2000和人血清对羟基磷灰石纳米颗粒通过共价结合或表面吸附的方式进行表面嫁接,并利用透射电镜,傅里叶红外光谱(FT-IR)和X射线衍射(XRD)对新合成的这三种纳米羟基磷灰石复合物的形貌,结构和晶粒粒径进行表征。对这三种羟基磷灰石纳米颗粒悬浮液的时间沉降曲线进行分析。在分散性上通过检测这三种羟基磷灰石复合物悬浮液在不同pH值下的Zeta电位并绘制Zeta-pH曲线。结果:我们发现CTAB修饰的羟基磷灰石纳米颗悬浮液的悬浮稳定性最佳,其次是PEG2000,最后是人血清。在pH=7.0时,CTAB修饰的羟基磷灰石纳米颗粒的zeta电位值是25.68 m V,而PEG2000修饰的Zeta电位是4.32m V,人血清修饰的Zeta电位是-13.23m V。结论:CTAB表面修饰的羟基磷灰石纳米颗粒相对于其它两种表面活性剂复合物具有更好的分散性和悬浮稳定性,与DNA/RNA结合能力更强。本课题的结果给羟基磷灰石纳米颗粒载体的应用提供了一种新的选择,有望利用亲和力更高的基因载体实现基因治疗,具有广阔的应用前景。  相似文献   

3.
Laccase (para-diphenol:oxygen oxidoreductase, EC 1.10.3.2) is a phenol oxidase widespread in fungi and bacteria. In basidiomycetes, this enzyme is involved in the transformation of lignin and humic substances (HS) in soil. The role of laccases of soil ascomycetes and deuteromycetes in HS degradation is not established, and conditions of the enzyme production have been poorly studied. In the present work soil micromycetes, potential laccase producers, were isolated from typical soils of the forest, steppe, and foreststeppe zones of European Russia by plating on agar media with ABTS (2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulphonic acid, sodium salt)) as the substrate. Their abundance, species composition, conditions of laccase production, and its relation to humic acids (HA) degradation in liquid and solid media were studied. Out of 68 strains isolated, 20 exhibited ABTS oxidation at initial plating on agar media. In pure cultures on agar media, oxidation was less pronounced, but in the presence of HA laccase production by some strains was higher than without HA. Significant and weak extracellular laccase production in liquid medium was observed for Acremonium murorum (Corda) W. Gams Z1710 and Botritis cinerea Pers. ex Fries Z1711, respectively. The level of laccase production by A. murorum was the same without inducers and in the presence of HA, while B. cinerea produced laccase only without inducers. No direct correlation was found between the presence of laccase and/or its activity and ability of the fungi to decolorize (degrade) HA. In liquid media active laccase producer A. murorum caused lower HA decolorization (43%) than B. cinerea (62%) and the fungi lacking extracellular laccase (54–81%). The role of micromycete oxidative systems in HA degradation requires further investigation.  相似文献   

4.
The mechanical properties of tissue engineering scaffolds play a critical role in the success of repairing damaged tissues/organs. Determining the mechanical properties has proven to be a challenging task as these properties are not constant but depend upon time as the scaffold degrades. In this study, the modeling of the time-dependent mechanical properties of a scaffold is performed based on the concept of finite element model updating. This modeling approach contains three steps: (1) development of a finite element model for the effective mechanical properties of the scaffold, (2) parametrizing the finite element model by selecting parameters associated with the scaffold microstructure and/or material properties, which vary with scaffold degradation, and (3) identifying selected parameters as functions of time based on measurements from the tests on the scaffold mechanical properties as they degrade. To validate the developed model, scaffolds were made from the biocompatible polymer polycaprolactone (PCL) mixed with hydroxylapatite (HA) nanoparticles and their mechanical properties were examined in terms of the Young modulus. Based on the bulk degradation exhibited by the PCL/HA scaffold, the molecular weight was selected for model updating. With the identified molecular weight, the finite element model developed was effective for predicting the time-dependent mechanical properties of PCL/HA scaffolds during degradation.  相似文献   

5.
Hyaluronan (HA) is produced by keratinocytes in human skin organ culture, and degraded locally in epidermis by an unknown metabolic route. The present work tested whether reactive oxygen species (ROS), spontaneously produced in the tissue, could contribute to HA catabolism in epidermis. Epidermal HA was endogenously labeled with 3H-glucosamine for 24 h, then chased for 24 h in the presence of superoxide dismutase (SOD) and catalase to reduce the concentration of ROS. In control cultures, 35% of labeled HA was degraded during the 24 h chase while the corresponding figures in the presence of SOD and catalase were 19% and 23%, respectively (p < 0.05). Methionine, a quencher of hypochlorous acid, did not significantly inhibit the degradation. In additional experiments, the iron and copper chelator Detapac was even more effective, reducing the degradation to 8–9%, and suggesting that the ROS responsible for the degradation were produced in the Fenton reaction. Dermal HA, and proteoglycans in both epidermis and dermis were not influenced by the treatments, indicating that the inhibition by SOD, catalase and Detapac on epidermal HA catabolism was specific. It is suggested that endogenous ROS is involved in the catabolism human epidermal HA.  相似文献   

6.
Trametes sp. M23, isolated from biosolids compost was found to decompose humic acids (HA). A low N (LN) medium (C/N, 53) provided suitable conditions for HA degradation, whereas in a high N (HN) medium (C/N, 10), HA was not degraded. In the absence of Mn2+, HA degradation was similar to that in Mn2+-containing medium. In contrast, MnP activity was significantly affected by Mn2+. Laccase activity exhibited a negative correlation to HA degradation, while LiP activity was not detected. Thus, ligninolytic enzymes activity could provide only a partial explanation for the HA-degradation mechanism. The decolorization of two dyes, Orange II and Brilliant Blue R250, was also determined. Similar to HA degradation, under LN conditions, decolorization occurred independently of the presence of Mn2+. We investigated the possible involvement of a Fenton-like reaction in HA degradation. The addition of DMSO, an OH-radical scavenger, to LN media resulted in a significant decrease in HA bleaching. The rate of extracellular Fe3+ reduction was much higher in the LN vs. HN medium. In addition, the rate of reduction was even higher in the presence of HA in the medium. In vitro HA bleaching in non-inoculated media was observed with H2O2 amendment to a final concentration of 200 mM (obtained by 50 mM amendments for 4 days) and Fe2+ (36 mM). After 4 days of incubation, HA decolorization was similar to the biological treatment. These results support our hypothesis that a Fenton-like reaction is involved in HA degradation by Trametes sp. M23.  相似文献   

7.
Hyaluronic acid (HA) was chemically modified either by oxidation to obtain aldehyde-HA (aHA) or 3,3'-dithiobis(propanoic hydrazide) to obtain thiol-HA (tHA) that was covalently immobilized on model substrata such as amino-terminated surfaces or gold. Knowledge about the effect of modification with HA on physicochemical surface properties of these substrata and estimates of the quantities of immobilized HA were obtained by different physical methods such as contact angle measurements, ellipsometry, and atomic force microscopy. The bioactivity of aHA and tHA toward their natural binding partner aggrecan was studied by comparing surface plasmon resonance to native HA; this shows that binding of aggrecan was achieved in a similar way. Dermal human fibroblasts were used as a model cell to study how chemical modification and immobilization of HA impact adhesion and spreading of cells, which also affects cell growth and differentiation. A lower number and spreading of cells were observed on HA-modified surfaces compared to amino- and vinyl-terminated glass and silicon surfaces. Immunofluorescence microscopy also revealed that adhesion of fibroblast plated on HA-modified surfaces was mediated primarily by HA receptor CD44, indicating that bioactivity of HA was not significantly reduced by chemical modification.  相似文献   

8.
The degradation of high-molar-mass hyaluronan (HA) by copper(II) chloride and ascorbate was studied by means of rotational viscometry. It was found that even small amounts of CuCl(2) present in the oxidative system led to the pronounced degradation of HA, reflected in a rapid decrease of the dynamic viscosity of the biopolymer solution. Such degradation was induced by free radicals generated in elevated amounts in the presence of copper ions. Electron paramagnetic resonance investigations performed on a model oxidative system containing Cu(II) and ascorbic acid proved the formation of relatively stable ascorbate anion radicals resulting from the reaction of ascorbic acid with hydroxyl radicals. In this way, by scavenging the hydroxyl radicals, ascorbic acid protected HA from their degradative action. Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied to analyze the degraded HA. The results showed that only regular fragmentation of hyaluronan occurred using the mentioned oxidative system that led to the formation of HA oligomers with unaffected primary chemical structure.  相似文献   

9.
10.
Hyaluronan (hyaluronic acid, HA) was depolymerised by ultrasonication (US), microwave irradiation (MW) and conventional heating (CH), and the effect of pH and oxidants was investigated. The degradation was followed by viscometry and size exclusion chromatography coupled with low-angle light scattering. The results demonstrated that depolymerisation of HA by US leveled off to a limiting molecular mass, and the degradation was significantly enhanced by acidic and alkaline pH only in the presence of oxidants. In contrast to US, the course of depolymerisation by MW was strongly pH-dependent, and the degradation rate increased with decreasing pH. The expected enhancement of depolymerisation by MW in comparison to CH was marked only at very short heating time at pH <4. The NMR and FTIR spectral analyses indicated that HA in the whole Mw-range studied retained almost the backbone of the parent polysaccharide independently on the degradation method used. At harsh degradation conditions (long-term treatments, particularly at acidic pH or alkaline pH and in presence of oxidants) the depolymerisation was accompanied by destruction of both constituent sugar residues and formation of unsaturated structures detectable by UV-absorption at 230–240 and 260–270 nm. US-assisted oxidative degradation under mild reaction conditions was shown to be the most appropriate procedure to reduce the molecular mass of HA to 100 kDa without significant chemical modification of the polysaccharide.  相似文献   

11.
Synovial hyperplasia is a feature of the chronic synovitis associated with basic calcium phosphate crystals [hydroxyapatite (HA), octacalcium phosphate, tricalcium phosphate] and calcium pyrophosphate. Each of these crystals stimulated mitosis of cultured human skin fibroblasts or canine synovial fibroblasts in a concentration-dependent fashion. We examined the effect of pure somatomedin C (Sm-C) on HA crystal induced mitogenesis. Confluent cultures of human fibroblasts were rendered quiescent by incubation in the presence of 1% platelet-poor-Sm-C free plasma (PPSCFP) for 24 hours. HA crystals stimulated thymidine incorporation 2.3-fold over control value. Addition of Sm-C significantly augmented the effect of HA crystals (P less than 0.01). Nearly identical effects were observed in the presence of 100 micrograms/ml HA crystals or 15 ng/ml PDGF. Monoclonal antibodies against Sm-C had little effect on the basal 3H thymidine uptake by control cells incubated in 1% PPSCFP but blocked over 50% of the HA crystal or PDGF-induced 3H thymidine incorporation both in the presence or absence of Sm-C. The incomplete blocking suggested either the presence of other "progression" factors, such as insulin-like growth factor II in the conditioned media or the possibility that HA or PDGF in high enough dosage enabled cells to escape their dependence on Sm-C for DNA synthesis.  相似文献   

12.
The present in vitro study created nanometer crystalline hydroxyapatite (HA) and amorphous calcium phosphate for novel orthopedic applications. Specifically, nano-crystalline HA and amorphous calcium phosphate nanoparticles were synthesized by a wet chemical process followed by hydrothermal treatment for 2 hours at 200 degrees C and 70 degrees C, respectively. Resulting particles were then pressed into compacts. For the preparation of control conventional HA particles (or those currently used in orthopedics with micron diameters), the aforementioned calcium phosphate particles were pressed into compacts and sintered at 1100 degrees C for 2 hours. All calcium phosphate-based particles were fully characterized. Results showed that although there was an initial weight gain for all the compacts studied in this experiment, higher eventual degradation rates up to 3 weeks were observed for nano-amorphous calcium phosphate compared with nano-crystalline HA which was higher than conventional HA. Peptide functionalization (with the cell adhesive peptide lysine-arginine-serine-arginine [KRSR] and the non-cell-adhesive peptide lysine-serine-arginine-arginine [KSRR]) was accomplished by means of a three-step reaction procedure: silanization with 3-aminopropyltriethoxysilane (APTES), cross-linking with N-succinimidyl-3-maleimido propionate (SMP), and finally peptide immobilization. The peptide functionalization was fully characterized. Results demonstrated increased osteoblast (bone-forming cell) adhesion on non-functionalized and functionalized nano-crystalline HA compacts compared with nano amorphous calcium phosphate compacts; both increased osteoblast adhesion compared with conventional HA. To further exemplify the novel properties of nano crystalline HA, results also showed similar osteoblast adhesion between non-functionalized nano crystalline HA and KRSR functionalized conventional HA. Thus, results provided evidence that nanocrystalline HA should be further studied for orthopedic applications.  相似文献   

13.
Humic acid (HA) is one of the major components of the natural organic matter present in the environment that alters the fate and behavior of silver nanoparticles (Ag NPs). Transformation of Ag NPs happens upon interaction with HA, thereby, changing both physical and chemical properties. Fluorescence spectroscopy and scanning electron microscopy (SEM) were used to analyze the interaction of Ag NPs with HA. In pH and time-dependent studies, the near field electro dynamical environment of Ag NPs influenced the fluorescence of HA, indicated by fluorescence enhancement. SEM revealed not only morphological changes, but also significant reduction in size of Ag NPs after interaction with HA. Based on these studies, a probable mechanism was proposed for the interaction of HA with Ag NPs, suggesting the possible transformation that these nanoparticles can undergo in the environment.  相似文献   

14.
The development of three-dimensional (3-D) scaffolds with highly open porous structure is one of the most important issues in tissue engineering. In this study, 3-D macroporous gelatin/hyaluronic acid (GE/HA) hybrid scaffolds with varying porous morphology were prepared by freeze-drying their blending solutions and subsequent chemical crosslinking by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). The resulting scaffolds were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Their swelling, in vitro degradation properties and compressive strength were also investigated. To evaluate in vitro cytocompatibility of scaffolds, mouse L929 fibroblasts were seeded onto the scaffolds for cell morphology and cell viability studies. It was found that the porous structure of scaffolds can be tailored by varying the ratios of gelatin to HA, both the swelling ratios and degradation rate increased with the increase of HA content in hybrid scaffolds, and crosslinking the scaffolds with EDC improved the degradation resistance of the scaffold in culture media and increased the mechanical strength of scaffolds. The in vitro results revealed that the prepared scaffolds do not induce cytotoxic effects and suitable for cell growth, especially in the case of scaffolds with higher gelatin content. The combined results of the physicochemical and biological studies suggested that the developed GE/HA hybrid scaffolds exhibit good potential and biocompatibility for soft tissue engineering applications.  相似文献   

15.
Hyaluronic acid (HA) coated drug carriers (HCDCs) were successfully synthesized by chemical conjugation method for targeted delivery of doxorubicin (DOX) as a prototype anticancer drug to CD44 expressed human breast cancer cell. From XPS analysis, the HCDCs by conjugation methods demonstrated the superior HA fixation amount and colloidal stability compared with the nanoparticles by nanoprecipitation. The cytotoxicity of the HCDCs formulation accessed by the MTT assay against the higher CD44 expressed cell line (MDA-MB-231) and lower CD44 expressed cell line (ZR-75-1) human breast cancer cell lines demonstrated that the HCDCs formulation exhibited excellent tumoricidal effect and their affinity to cancer cells was predominant. The in vitro drug release profile of the HCDCs showed sustained release behavior and after 14 days, 80% of the encapsulated DOX was released due to a high release rate of DOX from HCDCs. We synthesized that HCDCs have therapeutic potentials of cancer as a target specific fashion by increasing the tumoricidal efficacy of targeted cancer cells while reducing their cytotoxicity of non-targeted cells to minimize the side effect.  相似文献   

16.
Reggiani M  Taddei P  Tinti A  Fagnano C 《Biopolymers》2004,74(1-2):146-150
The enzymatic in vitro degradation of a commercial biodegradable hydroxyapatite (HA)-polymer (poly(epsilon-caprolactone)-poly(oxyethylene)(POE)-poly(epsilon-caprolactone) block copolymer) composite membrane was investigated by Raman and IR spectroscopies in two enzymatic solutions at 37 degrees C: esterase and alpha-chymotrypsin in saline phosphate buffer (SPB, pH 7.4). The degradation was found to be faster in the enzymatic medium than in SPB and alkaline solutions. The fastest degradation rate was observed in esterase solution. The trend of properly chosen Raman and IR intensity ratios was evaluated to go deeper inside the degradation mechanism: both polymeric and apatitic components were found to be involved in degradation. The former underwent preferential degradation of POE blocks, while HA is removed by the degradation medium faster than the polymer. Vibrational spectroscopy proved a valid tool for investigating the degradation of the membrane.  相似文献   

17.
In situ cross‐linked hyaluronan (HA) hydrogels with different capacities for biomineralization were prepared and their enzymatic degradation was monitored. Covalent incorporation of bisphosphonates (BPs) into HA hydrogel results in the increased stiffness of the hydrogel in comparison with the unmodified HA hydrogel of the same cross‐linking density. The rate of enzymatic degradation of HABP hydrogel was significantly lower than the rate of degradation of control HA hydrogel in vitro. This effect is observed only in the presence of calcium ions that strongly bind to the matrix‐anchored BP groups and promote further mineralization of the matrix. The degradation of the hydrogels was followed by noninvasive fluorescence measurements enabled after mild and chemoselective labeling of cross‐linkable HA derivatives with a fluorescent tag.  相似文献   

18.
Investigations on the ceramic degradation caused by osteoclasts are designed to assess osteoclast-ceramic interactions and to determine which ceramics are more suitable for use as bone substitute. This study investigated the resorptive activity of osteoclasts on ceramics presenting different solubility rates. Osteoclasts isolated from new-born rat and from human giant cell tumour were cultured on different bioceramics: hydroxyapatite (HA), beta-tricalcium phosphate (TCP) and calcium carbonate (calcite). Cytoskeletal was revealed by actin labelling and ceramic surfaces were observed by scanning electron microscopy (SEM). On all materials, the distribution of actin in typical ring was revealed. SEM examinations showed a clear difference in the shape and the depth of resorption lacunae on different ceramics. On pure HA, a superficial attack, clearly visible but very little extended. Numerous resorption lacunae, deep and well-delimited were observed on pure beta-TCP, but attacks less punctually were detected too. On pure calcite, an attack with form of spikes, very widespread but superficial was revealed. Degradation measurements revealed a significant increase of P release from the phosphocalcic ceramics and of Ca from all ceramics in the presence of osteoclasts. The both cell models found these characteristics, the rat osteoclasts were also an excellent model to study the ceramic resorption.  相似文献   

19.
Surface modification of glutaraldehyde fixed bovine pericardium (GFBP) was successfully carried out with hyaluronic acid (HA) derivatives. At first, HA was chemically modified with adipic dihydrazide (ADH) to introduce hydrazide functional group into the carboxyl group of HA backbone. Then, GFBP was surface modified by grafting HA-ADH to the free aldehyde groups on the tissue and the subsequent HA-ADH hydrogel coating. HA-ADH hydrogels could be prepared through selective crosslinking at low pH between hydrazide groups of HA-ADH and crosslinkers containing succinimmidyl moieties with minimized protein denaturation. When HA-ADH hydrogels were prepared at low pH of 4.8 in the presence of erythropoietin (EPO) as a model protein, EPO release was continued up to 85% of total amount of loaded EPO for 4 days. To the contrary, only 30% of EPO was released from HA-ADH hydrogels prepared at pH=7.4, which might be due to the denaturation of EPO during the crosslinking reaction. Because the carboxyl groups on the glucuronic acid residues are recognition sites for HA degradation by hyaluronidase, the HA-ADH hydrogels degraded more slowly than HA hydrogels prepared by the crosslinking reaction of divinyl sulfone with hydroxyl groups of HA. Following a two-week subcutaneous implantation in osteopontin-null mice, clinically significant levels of calcification were observed for the positive controls without any surface modification. However, the calcification of surface modified GFBP with HA-ADH and HA-ADH hydrogels was drastically reduced by more than 85% of the positive controls. The anti-calcification effect of HA surface modification was also confirmed by microscopic analysis of explan ted tissue after staining with Alizarin Red S for calcium, which followed the trend as observed with calcium quantification.  相似文献   

20.
Bovine testicular hyaluronidase (BTH) has been used as a spreading factor for many years and was primarily characterized by its enzymatic activity. As recombinant human hyaluronidases are now available the bovine preparations can be replaced by the human enzymes. However, data on the pH-dependent activity of hyaluronidases reported in literature are inconsistent in part or even contradictory. Detection of the pH-dependent activity of PH-20 type hyaluronidases, i.e. recombinant human PH-20 (rhPH-20) and BTH, showed a shift of the pH optimum from acidic pH values in a colorimetric activity assay to higher pH values in a turbidimetric activity assay. Contrarily, recombinant human Hyal-1 (rhHyal-1) and bee venom hyaluronidase (BVH) exhibited nearly identical pH profiles in both commonly used types of activity assays. Analysis of the hyaluronic acid (HA) degradation products by capillary zone electrophoresis showed that hyaluronan was catabolized by rhHyal-1 continuously into HA oligosaccharides. BTH and, to a less extent, rhPH-20 exhibited a different mode of action: at acidic pH (pH 4.5) HA was degraded as described for rhHyal-1, while at elevated pH (pH 5.5) small oligosaccharides were produced in addition to HA fragments of medium molecular weight, thus explaining the pH-dependent discrepancies in the activity assays. Our results suggest a sub-classification of mammalian-type hyaluronidases into a PH-20/BTH and a Hyal-1/BVH subtype. As the biological effects of HA fragments are reported to depend on the size of the molecules it can be speculated that different pH values at the site of hyaluronan degradation may result in different biological responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号