首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

2.
Rat Sertoli cells were cultured for 48 h in the presence of [35S]sulfate and extracted with 4 M guanidine chloride. In this extract, a Sepharose CL-2B Kav 0.10 proteoheparan appeared lipid associated, since after addition of detergent it emerged at Kav = 0.65 on Sepharose CL-2B. Treatment of cells with 0.2% Triton X-100 released 35S-labeled material which was purified by ion-exchange chromatography and hydrophobic interaction chromatography on octyl-Sepharose. Proteoglycan with affinity for octyl-Sepharose (Kav = 0.30 and 0.12 on Sepharose CL-4B and CL-6B, respectively) mostly carried heparan sulfate chains with Kav = 0.38 and minor proportion of heparan chains with Kav = 0.77 on Sepharose CL-6B. An association with lipids was confirmed by intercalation into liposomes of this proteoheparan which might be anchored in the plasma membrane, via an hydrophobic segment and/or covalently linked to an inositol-containing phospholipid. Non-hydrophobic material consisted of: (i) proteoheparan slightly smaller in size than lipophilic proteoheparan and possibly deriving from this one and (ii) two heparan sulfate glycosaminoglycan populations (Kav = 0.38 and 0.86 on Sepharose CL-6B) corresponding to single glycosaminoglycan chains and their degradation products.  相似文献   

3.
Primary cultures that contain only Schwann cells and sensory nerve cells synthesize basal lamina. The assembly of this basal lamina appears to be essential for normal Schwann cell development. In this study, we demonstrate that Schwann cells synthesize two major heparan sulfate-containing proteoglycans. Both proteoglycans band in dissociative CsCl gradients at densities less than 1.4 g/ml, and therefore, presumably, have relatively low carbohydrate-to-protein ratios. The larger of these proteoglycans elutes from Sepharose CL-4B in 4 M guanidine hydrochloride (GuHCl) at a Kav of 0.21 and contains heparan sulfate and chondroitin sulfate chains of Mr 21,000 in a ratio of approximately 3:1. This proteoglycan is extracted from cultures by 4 M GuHCl but not Triton X-100 and accumulates only when Schwann cells are actively synthesizing basal lamina. The smaller proteoglycan elutes from Sepharose CL-4B at a Kav of 0.44 and contains heparan sulfate and chondroitin sulfate chains of Mr 18,000 in a ratio of approximately 4:1. This proteoglycan is extracted by 4 M GuHCl or by Triton X-100. The accumulation of this proteoglycan is independent of basal lamina production.  相似文献   

4.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

5.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

6.
Shark cartilage chondroitin sulfate C was fractionated by chromatography on Sepharose CL-4B-2.5 to 1.5M ammonium sulfate in 10mM hydrochloric acid at 4 degrees. Both unit-disaccharide composition and molecular-size distribution clearly affected the fractionation. Comparison of this fractionation with the fractionation on Sepharose 6B gel in 0.2M sodium chloride revealed that the former is distinctly superior to the latter. The fractionation on Sepharose CL-4B in the presence of ammonium sulfate also showed that the chondroitin sulfate C molecules having a larger molecular size contain generally more chondroitin 6-sulfate units (as major constituent) and less chondroitin disulfate units (D type, as minor constituent) than those having a smaller molecular size).  相似文献   

7.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

8.
The regulation of vascular endothelial cell behavior during angiogenesis and in disease by transforming growth factor-beta(1) (TGF-beta(1)) is complex, but it clearly involves growth factor-induced changes in extracellular matrix synthesis. Proteoglycans (PGs) synthesized by endothelial cells contribute to the formation of the vascular extracellular matrix and also influence cellular proliferation and migration. Since the effects of TGF-beta(1) on vascular smooth muscle cell growth are dependent on cell density, it is possible that TGF-beta(1) also directs different patterns of PG synthesis in endothelial cells at different cell densities. In the present study, dense and sparse cultures of bovine aortic endothelial cells were metabolically labeled with [(3)H]glucosamine, [(35)S]sulfate, or (35)S-labeled amino acids in the presence of TGF-beta(1). The labeled PGs were characterized by DEAE-Sephacel ion exchange chromatography and Sepharose CL-4B molecular sieve chromatography. The glycosaminoglycan M(r) and composition were analyzed by Sepharose CL-6B chromatography, and the core protein M(r) was analyzed by SDS-polyacrylamide gel electrophoresis, before and after digestion with papain, heparitinase, or chondroitin ABC lyase. These experiments indicate that the effect of TGF-beta(1) on vascular endothelial cell PG synthesis is dependent on cell density. Specifically, TGF-beta(1) induced an accumulation of small chondroitin/dermatan sulfate PGs (CS/DSPGs) with core proteins of approximately 50 kDa in the medium of both dense and sparse cultures, but a cell layer-associated heparan sulfate PG with a core protein size of approximately 400 kDa accumulated only in dense cultures. Moreover, only in the dense cell cultures did TGF-beta(1) cause CS/DSPG hydrodynamic size to increase, which was due to the synthesis of CS/DSPGs with longer glycosaminoglycan chains. The heparan sulfate PG and CS/DSPG core proteins were identified as perlecan and biglycan, respectively, by Western blot analysis. The present data suggest that TGF-beta(1) promotes the synthesis of both perlecan and biglycan when endothelial cell density is high, whereas only biglycan synthesis is stimulated when the cell density is low. Furthermore, glycosaminoglycan chains are elongated only in biglycan synthesized by the cells at a high cell density.  相似文献   

9.
The study addressed the question of whether35SO4 labeled molecules that the have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a souluble fraction (soluble after centrifugation at 105,000g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000g) and a final 105,000g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatographys was resolved into a fraction of sulfated glycoproteins eluting at 0–0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32–0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated35SO4, showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the result support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system.  相似文献   

10.
11.
Two different forms of cell-associated [35S]-heparan sulfate proteoglycans were identified in prelabeled cultured cells, including glial cells, endothelial cells and fibroblasts. One of them migrated characteristically in the excluded volume fraction in Sepharose CL-2B chromatography and flotated in CsCl density gradient centrifugation. Further, it showed affinity for a hydrophobic gel, Octyl-Sepharose. The molecular size was markedly reduced and the density elevated by treatment with detergent or lipid solvents. These findings indicate an admixture of lipid in this proteoglycan and suggest a location for the molecule in the plasma membrane. This proteoglycan was found in all cell species examined. - The other type of heparan sulfate proteoglycan had a larger molecular size than most previously described heparan sulfate proteoglycans and had a buoyant density around 1.32 g/ml, probably due to an unusually high ratio of protein to carbohydrate. This heparan sulfate proteoglycan was found only in extracts of cells capable of forming a fibrillar extracellular matrix, but not in extracts of cells devoid of matrix. It was retained in cell-free preparations of extracellular matrix, indicating that it may be a specific product of this compartment.  相似文献   

12.
Heparan sulfate glycosaminoglycan, isolated from the cell surface of nonadhering murine myeloma cells (P3X63-Ag8653), does not bind to plasma fibronectin, but binds partially to collagen type I, as assayed by affinity chromatography with proteins immobilized on cyanogen bromide-activated Sepharose 4B. Identical results were obtained when myeloma heparan sulfate was cochromatographed, on the same fibronectin and collagen columns, with cell surface heparan sulfates collagen columns, with cell surface heparan sulfates from adhering Swiss mouse 3T3 and SV3T3 cells. These latter heparan sulfates do, however, bind to both fibronectin and collagen, as reported earlier (Stamatoglou, S.C., and J.M. Keller, 1981, Biochim. Biophys. Acta., 719:90-97). Cell adhesion assays established that hydrated collagen substrata can support myeloma cell attachment, but fibronectin cannot. Saturation of the heparan sulfate binding sites on the collagen substrata with heparan sulfate or heparin, prior to cell inoculation, abolished the ability to support cell adhesion, whereas chondroitin 4 sulfate, chondroitin 6 sulfate, and hyaluronic acid had no effect.  相似文献   

13.
Cell-associated proteoheparan sulfate has been isolated from bovine arterial smooth muscle cells preincubated with [35S]sulfate or a combination of [3H]glucosamine and [35S]methionine. The purified proteoheparan sulfate had an apparent Mr of 200,000 on calibrated Sepharose CL-2B columns. The glycosaminoglycan component (Mr approximately 30,000) was identified as heparan sulfate by its susceptibility to specific enzymatic and chemical degradation. After degradation of the proteoheparan sulfate by microbial heparitinase the resulting protein core had an apparent Mr of 92,000 on SDS-polyacrylamide gels. Its mobility was similar in the absence and presence of reducing agents indicating that the protein core consists of a single polypeptide chain. Pulse-chase experiments revealed that about 40% of the cell layer-associated proteoheparan sulfate was released into the medium, while the remainder was internalized and converted to smaller species through a series of degradation steps. Initially there was a proteolytical cleavage of the protein core generating glycosaminoglycan peptide intermediates with polysaccharides chains similar in size to the original. The half-life of the native proteoheparan sulfate was found to be about 4 h.  相似文献   

14.
Proteoglycans (PGs) synthesized by the epidermis during stages crucial to the subepidermal migration of neural crest cells in the trunk of the axolotl (Ambystoma mexicanum, Urodela, Amphibia) embryo were studied. The glycosaminoglycan chains were biosynthetically labeled with [35S]sulfate in vitro during a period corresponding to the onset of migration. After extraction with guanidine HCl, the radiolabeled PGs were separated according to size by molecular-sieve chromatography on Sepharose CL-2B under dissociative conditions. This resulted in the separation of high-molecular-weight PGs, which eluted in the void volume, and low-molecular-weight PGs, eluting in a broad peak with a mean Kav of 0.7. The large PGs were also found to elute in the void volume when chromatographed on a Sephacryl S-1000 column. The low-molecular-weight PGs contained heparan sulfate and chondroitin sulfate (CS) and were not further characterized. The glycosaminoglycan component of the high-molecular-weight PG was completely degraded by chondroitinase ABC, while a large portion was resistant to chondroitinase AC, indicating the presence of dermatan sulfate (DS). These CS/DS chains were of unusually large size (Mr approximately 150,000) as estimated by chromatography on Sepharose CL-4B, relating the elution position to hyaluronan standards. Moreover, the chains were found to have a lower surface charge density than standard CS, and may therefore be undersulfated. After reduction and alkylation the high-molecular-weight PGs were included on both Sepharose CL-2B and Sephacryl S-1000 columns, eluting at Kav 0.2 and 0.4, respectively. Hence, the high-molecular-weight material appears to consist of large PG complexes, stabilized by intermolecular disulfide bonds. A CS/DSPG of similar size as the reduced monomeric form of the high-molecular-weight PG was found in small amounts in the total extract of 35S-labeled material.  相似文献   

15.
We report further analysis of axonally transported proteoglycans in soluble and membranous subfractions of goldfish optic tectum. Distribution of transported35SO4 radioactivity was 35.2% soluble, 63.4% Triton-NaCl extractable and 1.4% unextracted. Proteoglycans isolated on DEAE cellulose were treated with chondroitinase AC or nitrous acid and remaining heparan sulfate proteoglycans (HSPGs) and chondroitin sulfate proteoglycans (CSPGs) were sized on Sepharose CL-6B. Kav values and estimated molecular weights were: Soluble CSPG-0.36 (160 kDa), Triton-NaCl extracted CSPG-.031 (200 kDa), Soluble HSPG-0.37 (150 kDa), Triton-NaCl extracted HSPG-0.37 (150 kDa). For constituent CS and HS chains the Kav values and estimated molecular weights on CL-6B were: Soluble CS-0.55 (15 kDa), Triton-NaCl extracted CS-0.55 (15 kDa), Soluble HS-0.59 (13 kDa) and Triton-NaCl extracted HS-0.65 (9 kDa). CS was shown to be sulfated exclusively at carbon 4 for both soluble and Triton NaCl extracted fractions.  相似文献   

16.
Prophenoloxidase (PPO) was isolated from the hemolymph of Ostrinia furnacalis larvae and purified to homogeneity. A 369.85-fold purification and 35.34% recovery of activity were achieved by employing ammonium sulfate precipitation, Blue Sepharose CL-6B chromatography and Phenyl Sepharose CL-4B chromatography. The purified enzyme exhibits a band with a molecular mass of 158 kDa on native PAGE and two spots with a molecular mass of 80 kDa and a pI of 5.70, and a molecular mass of 78 kDa and a pI of 6.50, respectively, on two-dimensional gel electrophoresis. The N-terminal amino acid sequences of two subunits are as follows: PPO1, FGEEPGVQTTELKPLANPPQFRRASQLPRD; PPO2, FGDDAGERIPLQNLSQVPQFRVPSQLPTD. The amino acid composition of purified PPO was similar to that from Galleria mellonella. The enzyme kinetic property of the purified protein showed that the affinity of the enzyme for dopamine was higher than that for l-DOPA and N-acetyldopamine. The phenoloxidase (PO) reaction was strongly inhibited by phenylthiourea, thiourea, dithiothreitol and ethylene diamine tetraacetic acid (EDTA), but poorly inhibited by diethyldithiocarbamate (DTC) and triethylenetetramine hexaacetic acid (THAA), and was not inhibited by o-phenanthroline and ethylene glycol-bis (beta-aminoethylether) N,N,N',N'-tetraacetic acid (EGTA). Both Mg(2+) and Cu(2+) stimulated PO activity when compared with controls. The beta-sheet content of PPO treated with Mg(2+) and Cu(2+) increased significantly (P<0.05). The purified PPO has magnesium level of 5.674+/-2.294 microg/mg and copper level of 1.257+/-0.921 microg/mg as determined with ICP-MS, suggesting that the purified PPO is a metalloprotein.  相似文献   

17.
Human neuroblastoma cells (Platt) were detached from tissue culture substrata with a Ca2+ chelating agent, and then the suspended cells were extracted with a sodium dodecyl sulfate (SDS)-containing buffer to maximally solubilize their sulfate-radiolabeled proteoglycans. The majority of the high-molecular-weight material in these dissociative extracts was heparan sulfate proteoglycan, which resolves into two heterodisperse size classes upon gel filtration on columns of Sepharose CL4B. After removal of SDS from these extracts by hydrophobic chromatography on Sep-Pak C18 cartridges, extracts were further fractionated on various affinity matrices. All of the sulfate-radiolabeled material eluted as one peak from DEAE-Sephadex ion-exchange columns. In contrast, affinity fractionation on Sepharose columns derivatized with the heparan sulfate-binding protein, platelet factor-4, resolved three major and one minor subsets of these components. The nonbinding fraction contained some heparan sulfate proteoglycan and some chondroitin sulfate. The weak-binding fraction contained principally heparan sulfate proteoglycan, as well as a small amount of chondroitin sulfate proteoglycan; the gel-filtration properties of these proteoglycans before or after alkaline borohydride treatment indicated that they were small in size, containing perhaps 2 to 4 glycosaminoglycan chains. The high-affinity fraction eluted from platelet factor 4-Sepharose was composed entirely of “singlechain” heparan sulfate. A portion of the heparan sulfate proteoglycan of the original extract bound to the hydrophobic affinity matrix, octyl-Sepharose, and this hydrophobic proteoglycan partitioned into the nonbinding and weak-binding fractions of the platelet factor 4-Sepharose affinity columns. These studies reveal that the majority of the proteoglycan made by these neuronal cells in culture is of the heparan sulfate class, is small in size when compared to other characterized proteoglycans, and can be resolved into several overlapping subsets when fractionated on affinity matrices.  相似文献   

18.
Metabolically 35S-labeled proteoglycans were isolated from cell-associated matrices and media of confluent cultures of human normal transitional epithelial cells and HCV-29T transitional carcinoma cells. On Sepharose CL-4B columns, the cell-associated proteoglycans synthesized from both cell types separated into three identical size classes, termed CI, CII, and CIII. Normal epithelial cell C-fractions eluted in a 22:34:45 proportion and contained 64%, 64%, and 72% heparan sulfate, whereas corresponding HCV-29T fractions eluted in a 29:11:60 proportion, and contained 91%, 77%, and 70% heparan sulfate, respectively. Medium proteoglycans from normal cells separated into two size classes in a proportion of 6:94 and were composed of 35% and 50% heparan sulfate. HCV-29T medium contained only one size class of proteoglycans consisting of 23% heparan sulfate. The remaining percentages were accounted for by chondroitin/dermatan sulfate. On isopycnic CsCl gradients, proteoglycan fractions from normal cells had buoyant densities that were higher than the corresponding fractions from HCV-29T cells. DEAE-Sephacel chromatography showed that cell and medium associated heparan sulfate from HCV-29T cells was consistently of lower charge density (undersulfated) than that from normal epithelial cells. In contrast, the chondroitin/dermatan sulfate of HCV-29T was of a charge density similar to that of normal cells. These as well as other structural and compositional differences in the proteoglycan may account, at least in part, for the altered behavioral traits of highly invasive carcinoma cells.  相似文献   

19.
Disulfide-bonded aggregates of heparan sulfate proteoglycans   总被引:1,自引:0,他引:1  
Heparan sulfate proteoglycans have been isolated from Swiss mouse 3T3 cells by using two nondegradative techniques: extraction with 4 M guanidine or 2.5% 1-butanol. These proteoglycans were separated from copurifying chondroitin sulfate proteoglycans by using ion-exchange chromatography on DEAE-cellulose in the presence of 2 M urea. The purified heparan sulfate proteoglycans are substantially smaller, ca. Mr 20 000, than those isolated from these same cells with trypsin, ca. Mr 720 000 [Johnston, L.S., Keller, K. L., & Keller, J. M. (1979) Biochim. Biophys. Acta 583, 81-94]. However, all of the heparan sulfate proteoglycans extracted by these three methods contain similar glycosaminoglycan chains (Mr 7500) and are derived from the same pool of cell surface associated molecules. The trypsin-released heparan sulfate proteoglycan (ca. Mr 720 000) can be significantly reduced in size (ca. Mr 33 000) under strong denaturing conditions in the presence of the disulfide reducing agent dithiothreitol, which suggests that this form of the molecule is a disulfide-bonded aggregate. The heparan sulfate proteoglycan isolated from the medium also undergoes a significant size reduction in the presence of dithiothreitol, indicating that a similar aggregate is formed as part of the normal release of heparan sulfate proteoglycans into the medium. These results suggest that well-shielded disulfide bonds between individual heparan sulfate proteoglycan monomers may account for the large variation in sizes which has been reported for heparan sulfate proteoglycans isolated from a variety of cells and tissues with a variety of extraction procedures.  相似文献   

20.
Cloned bovine aortic endothelial cells were cultured with [35S]Na2SO4 and proteolyzed extensively with papain. Radiolabeled heparan sulfate was isolated by DEAE-Sephacel chromatography. The mucopolysaccharide was then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate, which bound tightly to the protease inhibitor, represented 0.84% of the mucopolysaccharide mass, accounted for greater than 99% of the initial anticoagulant activity, and exhibited a specific activity of 1.16 USP units/10(6) 35S-cpm. However, the heparan sulfate that interacted minimally with the protease inhibitor constituted greater than 99% of the mucopolysaccharide mass, represented less than 1% of the starting biologic activity, and possessed a specific anticoagulant potency of less than 0.0002 USP unit/10(6) 35S-cpm. An examination of the disaccharide composition of the two populations revealed that the high-affinity heparan sulfate contained a 4-fold or greater amount of GlcA----GlcN-SO3-3-O-SO3 (where GlcA is glucuronic acid), which is a marker for the antithrombin-binding domain of commercial heparin, as compared with the depleted material. Cloned bovine aortic endothelial cells were incubated with [35S]Na2SO4 as well as tritiated amino acids and completely solubilized with 4 M guanidine hydrochloride and detergents. The double-labeled proteoglycans were isolated by DEAE-Sephacel, Sepharose CL-4B, and octyl-Sepharose chromatography. These hydrophobic macromolecules were then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate proteoglycans which bound tightly to the protease inhibitor represented less than 1% of the starting material and exhibited a specific anticoagulant activity as high as 21 USP units/10(6) 35S-cpm, whereas the heparan sulfate proteoglycan that interacted weakly with the protease inhibitor constituted greater than 99% of the starting material and possessed a specific anticoagulant potency as high as 0.02 USP unit/10(6) 35S-cpm. The high-affinity heparan sulfate proteoglycan is responsible for more than 85% of the anticoagulant activity of the cloned bovine aortic endothelial cells. Binding studies conducted with 125I-labeled antithrombin demonstrated that these biologically active proteoglycans are located on the surface of cloned bovine aortic endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号