首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consequences of plant species loss are rarely assessed in a multi-trophic context and especially effects on life-history traits of organisms at higher trophic levels have remained largely unstudied. We used a grassland biodiversity experiment and measured the effects of two components of plant diversity, plant species richness and the presence of nitrogen-fixing legumes, on several life-history traits of naturally colonizing aphids and their primary and secondary parasitoids in the field. We found that, irrespective of aphid species identity, the proportion of winged aphid morphs decreased with increasing plant species richness, which was correlated with decreasing host plant biomass. Similarly, emergence proportions of parasitoids decreased with increasing plant species richness. Both, emergence proportions and proportions of female parasitoids were lower in plots with legumes, where host plants had increased nitrogen concentrations. This effect of legume presence could indicate that aphids were better defended against parasitoids in high-nitrogen environments. Body mass of emerged individuals of the two most abundant primary parasitoid species was, however, higher in plots with legumes, suggesting that once parasitoids could overcome aphid defenses, they could profit from larger or more nutritious hosts. Our study demonstrates that cascading effects of plant species loss on higher trophic levels such as aphids, parasitoids and secondary parasitoids begin with changed life-history traits of these insects. Thus, life-history traits of organisms at higher trophic levels may be useful indicators of bottom-up effects of plant diversity on the biodiversity of consumers.  相似文献   

2.
Abstract:  In order to establish the host range of the pea aphid subspecies, Acyrthosiphon pisum ssp. destructor , and hence from which plant species pea crops are likely to become infested, the performance of this aphid on different leguminous plants was assessed. The plant species used were: Lotus uliginosus , Medicago sativa , Melilotus officinalis , Ononis repens , Sarothamnus scoparius , Trifolium hybridum , Trifolium pratense , Trifolium repens , Vicia cracca and Vicia faba . Vicia faba and Trifolium hybridum were the plants on which aphids reached the greatest size, took the least time to reach maturity, and experienced the lowest mortality. The time taken for the aphids to develop to maturity was negatively correlated with adult size, whereas survival to maturity was positively correlated with adult size. The host preference of the aphids was also assessed. The plant species selected as hosts by alatae were those on which their offspring performed best.  相似文献   

3.
Floral plantings are often used in agriculture to attract pollinator communities, but they also play an important role in recruiting and establishing natural communities for natural pest control. Inconsistent effects of floral plantings for pest control may be a result of an absence of mechanistic insights and a reliance on the idea that simply increasing flower diversity will benefit these services. A more tailored set of flower species may be needed to benefit the natural enemies through provision of nectar and alternative prey. We used an outside pot experiment to investigate the effect of three flower plants (Fagopyrum esculentum, Vicia faba, and Trifolium pratense) on reducing aphid pests on four different plant cultivars of barley (Hordeum vulgare), over two years. We grew the four cultivars of barley alone, next to a single flower or next to a mixture of flowers, and observed aphid and natural enemy colonization across the growing season. Aphid population sizes were reduced on all barley cultivars grown next to a flower with stronger pest suppression when all flowers were present. Each flower species recruited a different community of non‐barley aphids that, in turn, varied in their ability to establish the natural enemy populations and subsequently the ability to reduce barley aphid populations. Overall, increased pest suppression in the mixed treatments was a result of numerous weaker interactions between different flower, aphid, and natural enemy species, rather than a few dominant interactions. Natural enemy communities could be enhanced by incorporating flower species that vary in their ability to attract and host alternative prey (i.e., non‐pest aphids) as well as suitable nectar provisioning. We can use our knowledge of ecological interactions to tailor floral plantings to increase the effectiveness of pest control services.  相似文献   

4.
Abstract. 1.  Laboratory studies have implicated various accessory bacteria of aphids as important determinants of aphid performance, especially on certain plant species and under certain thermal regimes. One of these accessory bacteria is PABS (also known as T-type), which is distributed widely but is not universal in natural populations of the pea aphid Acyrthosiphon pisum in the U.K.
2.  To explore the impact of PABS on the performance of A. pisum , the nymphal development time and fecundity of aphids collected directly from natural populations and caged on the host plant Vicia faba in the field were quantified. Over 4 consecutive months June–September 1999, the performance of PABS-positive and PABS-negative aphids did not differ significantly.
3.  Deterministic modelling of the performance data showed that the variation in simulated population increase of PABS-positive and PABS-negative aphids would overlap substantially.
4.  Analysis of aphids colonising five host plants ( Lathyrus odoratus , Medicago sativa , Pisum sativum , Trifolium pratense , Vicia faba ) between April and September 2000 and 2001, identified no robust differences between the distribution of PABS-positive and PABS-negative aphids on different plants and with season or temperature.
5.  It is concluded that PABS is not an important factor shaping the performance or plant range of A. pisum under the field conditions tested. Reasons for the discrepancies between this study and laboratory-based studies are considered.  相似文献   

5.
The Janzen‐Connell hypothesis proposes that plant interactions with host‐specific antagonists can impair the fitness of locally abundant species and thereby facilitate coexistence. However, insects and pathogens that associate with multiple hosts may mediate exclusion rather than coexistence. We employ a simulation model to examine the effect of enemy host breadth on plant species richness and defence community structure, and to assess expected diversity maintenance in example systems. Only models in which plant enemy similarity declines rapidly with defence similarity support greater species richness than models of neutral drift. In contrast, a wide range of enemy host breadths result in spatial dispersion of defence traits, at both landscape and local scales, indicating that enemy‐mediated competition may increase defence‐trait diversity without enhancing species richness. Nevertheless, insect and pathogen host associations in Panama and Papua New Guinea demonstrate a potential to enhance plant species richness and defence‐trait diversity comparable to strictly specialised enemies.  相似文献   

6.
1. We studied the community and food-web structure of trap-nesting insects in restored meadows and at increasing distances within intensively managed grassland at 13 sites in Switzerland to test if declining species diversity correlates with declining interaction diversity and changes in food-web structure. 2. We analysed 49 quantitative food webs consisting of a total of 1382 trophic interactions involving 39 host/prey insect species and 14 parasitoid/predator insect species. Species richness and abundance of three functional groups, bees and wasps as the lower trophic level and natural enemies as the higher trophic level, were significantly higher in restored than in adjacent intensively managed meadows. Diversity and abundance of specific trophic interactions also declined from restored to intensively managed meadows. 3. The proportion of attacked brood cells and the mortality of bees and wasps due to natural enemies were significantly higher in restored than in intensively managed meadows. Bee abundance and the rate of attacked brood cells of bees declined with increasing distance from restored meadows. These findings indicate that interaction diversity declines more rapidly than species diversity in our study system. 4. Quantitative measures of food-web structure (linkage density, interaction diversity, interaction evenness and compartment diversity) were higher in restored than in intensively managed meadows. This was reflected in a higher mean number of host/prey species per consumer species (degree of generalism) in restored than in intensively managed meadows. 5. The higher insect species and interaction diversity was related to higher plant species richness in restored than in intensively managed meadows. In particular, bees and natural enemies reacted positively to increased plant diversity. 6. Our findings provide empirical evidence for the theoretical prediction that decreasing species richness at lower trophic levels should reduce species richness at higher trophic levels, and in addition lead to even stronger reductions in interaction diversity at these higher levels. Species at higher trophic levels may thus benefit relatively more than species at lower trophic levels from habitat restoration in the grassland ecosystems studied. We also demonstrate enhanced compartment diversity and lower interaction evenness in restored than in intensively managed meadows, both of which are theoretically positively associated with increased ecosystem stability in restored meadows.  相似文献   

7.
Biodiversity research has shown that primary productivity increases with plant species number, especially in many experimental grassland systems. Here, we assessed the correlation between productivity and diversity of phytophages and natural enemy assemblages associated with planting date and intercropping in four cotton agroecosystems. Twenty-one pairs of data were used to determine Pearson correlations between species richness, total number of individuals, diversity indices and productivity for each assemblage every five days from 5 June to 15 September 2012. At the same trophic level, the productivity exhibited a significant positive correlation with species richness of the phytophage or predator assemblage. A significant correlation was found between productivity and total number of individuals in most cotton fields. However, no significant correlations were observed between productivity and diversity indices (including indices of energy flow diversity and numerical diversity) in most cotton fields for either the phytophage or the predator assemblages. Species richness of phytophage assemblage and total individual numbers were significantly correlated with primary productivity. Also, species richness of natural enemy assemblage and total number of individuals correlated with phytophage assemblage productivity. A negative but not significant correlation occurred between the indices of numerical diversity and energy flow diversity and lower trophic-level productivity in the cotton-phytophage and phytophage-predator assemblages for most intercropped cotton agroecosystems. Our results clearly showed that there were no correlations between diversity indices and productivity within the same or lower trophic levels within the phytophage and predator assemblages in cotton agroecosystems, and inter-cropped cotton fields had a stronger ability to support the natural enemy assemblage and potentially to reduce phytophages.  相似文献   

8.
The suppression of agricultural pests has often been proposed as an important service of natural enemy diversity, but few experiments have tested this assertion. In this study we present empirical evidence that increasing the richness of a particular guild of natural enemies can reduce the density of a widespread group of herbivorous pests and, in turn, increase the yield of an economically important crop. We performed an experiment in large field enclosures where we manipulated the presence/absence of three of the most important natural enemies (the coccinellid beetle Harmonia axyridis, the damsel bug Nabis sp., and the parasitic wasp Aphidius ervi) of pea aphids (Acyrthosiphon pisum) that feed on alfalfa (Medicago sativa). When all three enemy species were together, the population density of the pea aphid was suppressed more than could be predicted from the summed impact of each enemy species alone. As crop yield was negatively related to pea aphid density, there was a concomitant non‐additive increase in the production of alfalfa in enclosures containing the more diverse enemy guild. This trophic cascade appeared to be influenced by an indirect interaction involving a second herbivore inhabiting the system – the cowpea aphid, Aphis craccivora. Data suggest that high relative densities of cowpea aphids inhibited parasitism of pea aphids by the specialist parasitoid, A. ervi. Therefore, when natural enemies were together and densities of cowpea aphids were reduced by generalist predators, parasitism of pea aphids increased. This interaction modification is similar to other types of indirect interactions among enemy species (e.g. predator–predator facilitation) that can enhance the suppression of agricultural pests. Results of our study, and those of others performed in agroecosystems, complement the broader debate over how biodiversity influences ecosystem functioning by specifically focusing on systems that produce goods of immediate relevance to human society.  相似文献   

9.
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.  相似文献   

10.
Most studies regarding ant–aphid interactions focus only on the direct effects of ants on tended aphids and aphidophagous predators, or the indirect effects on the host plant. Studies evaluating the effects of aphid‐tending ants on more than one trophic level are rare and evaluate only the presence or absence of such effects. Here we assessed the effect sizes of ants in a tri‐trophic system (common bean plants, aphids and lacewing larvae). We tested if the presence of aphid‐tending ants has positive effects on aphid abundance and host‐plant production and negative effects on aphid predator abundance. We also hypothesized that aphid‐tending ants affect more intensely trophic levels that are more directly related to them (i.e., first aphids, then aphid predators and then host plants). We tested these hypotheses in field mesocosms experiments using the presence and absence of ants. We found that aphid‐tending ants have great positive effects on final aphid abundance. Ants also positively affected the number of seeds; however, it was not possible to measure the effect size for this trophic level. Furthermore, ants had negative effects on lacewing larvae only at first release. The effect size of ants was greater for aphids, followed by lacewing larvae, and with no effects on the number of seeds produced. Ants positively affect aphids and host‐plant production, probably by way of honeydew collection preventing the development of entomophagous/saprophytic fungi. On the other hand, ants negatively affect lacewing larvae by excluding them from the host plant. In natural systems, several ant species may attend aphids, differently affecting the organisms of the various trophic levels within the ant–aphid interaction, thereby obscuring the real effect size of ants. Assessing the effect size of aphid‐tending ants on the organisms involved in ant–aphid interactions provides more realistic information about the effects of this interaction on natural systems.  相似文献   

11.
Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology.We explore the effects of crop species richness on the diversity of pest insects and their natural enemies.Using data from a four-year experiment with five levels of crop species richness,we found that crop species richness significantly affected the pest species richness,but there were no significant effects on richness of the pests’natural enemies.In contrast,the species richness of pest insects significantly affected their natural enemies.These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels,while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level.High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops.Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.  相似文献   

12.
Multitrophic interactions play key roles in the origin and maintenance of species diversity, and the study of these interactions has contributed to important theoretical advances in ecology and evolutionary biology. Nevertheless, most biodiversity inventories focus on static species lists, and prominent theories of diversity still ignore trophic interactions. The lack of a simple interaction metric that is analogous to species richness is one reason why diversity of interactions is not examined as a response or predictor variable in diversity studies. Using plant–herbivore–enemy trophic chains as an example, we develop a simple metric of diversity in which richness, diversity indices (e.g., Simpson's 1/D), and rarefaction diversity are calculated with links as the basic unit rather than species. Interactions include all two-link (herbivore–plant and enemy–herbivore) and three-link (enemy–herbivore–plant) chains found in a study unit. This metric is different from other indices, such as traditional diversity measures, connectivity and interaction diversity in food-web studies, and the diversity of interaction index in behavioral studies, and it is easier to compute. Using this approach to studying diversity provides novel insight into debates about neutrality and correlations between diversity, stability, productivity, and ecosystem services.  相似文献   

13.
We experimentally separated the effects of two components of plant diversity-plant species richness and plant functional group richness-on insect communities. Plant species richness and plant functional group richness had contrasting effects on insect abundances, a result we attributed to three factors. First, lower insect abundances at higher plant functional group richness were explained by a sampling effect, which was caused by the increasing likelihood that one low-quality group, C4 grasses, would be present and reduce average insect abundances by 25%. Second, plant biomass, which was positively related to plant functional group richness, had a strong, positive effect on insect abundances. Third, a positive effect of plant species richness on insect abundances may have been caused by greater availability of alternate plant resources or greater vegetational structure. In addition, a greater diversity of insect species, whose individual abundances were often unaffected by changes in plant species richness, may have generated higher total community abundances. After controlling for the strong, positive influence of insect abundance on insect diversity through rarefaction, insect species richness increased as plant species richness and plant functional group richness increased. Although these variables did not explain a high proportion of variation individually, plant species richness and plant functional group richness had similar effects on insect diversity and opposing effects on insect abundances, and both factors may explain how the loss of plant diversity influences higher trophic levels.  相似文献   

14.
1. Microbial symbionts can play an important role in defending their insect hosts against natural enemies. However, researchers have little idea how the presence of such protective symbionts impacts food web interactions and species diversity. 2. This study investigated the effects of a protective symbiont (Hamiltonella defensa) in pea aphids (Acyrthosiphon pisum) on hyperparasitoids, which are a trophic level above the natural enemy target of the symbiont (primary parasitoids). 3. Pea aphids, with and without their natural infections of H. defensa, were exposed first to a primary parasitoid against which the symbiont provides partial protection (either Aphidius ervi or Aphelinus abdominalis), and second to a hyperparasitoid known to attack the primary parasitoid species. 4. It was found that hyperparasitoid hatch rate was substantially affected by the presence of the symbiont. This effect appears to be entirely due to the removal of potential hosts by the action of the symbiont: there was no additional benefit or cost experienced by the hyperparasitoids in response to symbiont presence. The results were similar across the two different aphid–parasitoid–hyperparasitoid interactions we studied. 5. It is concluded that protective symbionts can have an important cascading effect on multiple trophic levels by altering the success of natural enemies, but that there is no evidence for more complex interactions. These findings demonstrate that the potential influence of protective symbionts on the wider community should be considered in future food web studies.  相似文献   

15.
食物网中的上行效应和下行效应对于群落的动态和生态系统功能有十分重要的影响,旨在探讨互利关系和植物多样性对节肢动物群落中食物网不同营养级之间的影响。通过随机裂区试验方法,分别设置了3种蚂蚁-紫胶虫互利关系处理(有互利关系、无互利关系和自然对照)以及3种植物多样性处理(单一种植、2树种混植和3树种混植),于2016年8月和9月分两次用手捡法、网扫法和震落法采集试验地寄主植物上所有的节肢动物,并按照不同营养级将其分类。利用结构方程模型分析方法对不同营养级之间的相互作用的路径和强度进行了比较,结果显示:1)互利关系对捕食者和消费者均有显著的下行作用,有互利关系处理下蚂蚁对捕食者的路径强度要强于自然对照组,互利关系对捕食者的影响要强于对消费者的影响。2)植物多样性会通过影响植物的生物量而对消费者和捕食者产生显著的上行效应影响,这种影响会随着营养级的升高而显著减小。3)消费者主要受植物多样性的上行效应影响,而捕食者主要受互利关系的下行效应影响。有互利关系的食物网结构更加复杂,营养级之间的相互作用更为显著。探讨了以蚂蚁-紫胶虫互利关系为核心作用的紫胶林生态系统中互利关系和植物多样性对节肢动物食物网中各营养级的影响,揭示了上行效应和下行效应对各营养级的作用途径和强度,其结果有一定的理论参考价值。  相似文献   

16.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

17.
Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack.  相似文献   

18.
Community structures of aphids and their parasitoids were studied in fruit crop habitats of eastern Belgium in 2014 and 2015. Quantitative food webs of these insects were constructed separately for each year, and divided into subwebs on three host‐plant categories, fruit crop plants, non‐crop woody and shrub plants and non‐crop herbaceous plants. The webs were analyzed using the standard food web statistics designed for binary data. During the whole study period, 78 plant species were recorded as host plants of 71 aphid species, from which 48 parasitoid species emerged. The community structure, aphid / parasitoid species‐richness ratio and trophic link number varied between the two years, whereas the realized connectance between parasitoids and aphids was relatively constant. A new plant–aphid–parasitoid association for Europe was recorded. Dominant parasitoid species in the study sites were Ephedrus persicae, Binodoxys angelicae and Praon volucre: the first species was frequently observed on non‐crop trees and shrubs, but the other two on non‐crop herbaceous plants. The potential influence, through indirect interactions, of parasitoids on aphid communities was assessed with quantitative parasitoid‐overlap diagrams. Symmetrical links were uncommon, and abundant aphid species seemed to have large indirect effects on less abundant species. These results show that trophic indirect interactions through parasitoids may govern aphid populations in fruit crop habitats with various non‐crop plants, implying the importance for landscape management and biological control of aphid pests in fruit agroecosystems.  相似文献   

19.
Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.  相似文献   

20.
Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号