首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
Chang liver cells and Chinese hamster ovary (CHO) cells were imprinted either with insulin or with thyrotropin (TSH). Chang liver cells responded to insulin but not to TSH. As an effect of imprinting evoked by insulin administration the binding of insulin administered for the second time was enhanced. In the mixed culture of imprinted and intact cells the extent of the binding was similar to that seen in the cultures of the cells having received imprintatory treatment alone. CHO cells also responded to TSH, imprinting developed and was transmitted to the cells which were not in interaction with the hormone (intact cells). In CHO cells also insulin gave rise to imprinting for insulin, whereas TSH gave rise to moderate binding imprinting for insulin. On the other hand, insulin imprinting did not enhance the binding of TSH. The obtained results indicate that both the imprinting itself and the specificity of the transmission of imprinting depend on the characteristics of the cell-type in question. The extent of the transmission, however, is always proportional to the extent of imprinting.  相似文献   

2.
G Csaba  G Németh  P Kovács  P Vargha  A Vas 《Bio Systems》1985,17(3):227-231
The polypeptide hormones insulin, glucagon, thyrotropin (TSH), pregnant mare serum gonadotropin (PMSG) and adrenocorticotropin (ACTH) stimulated the growth of the Tetrahymena, and the non-hormone polypeptides (bovine serum albumin (BSA), protamine) had a similar effect. Re-exposure after 24 h accounted for a greater growth stimulation than pre-exposure alone in cultures treated with TSH and PMSG, and re-exposure after 7 days had such effect in all polypeptide-treated cultures. It follows that the non-hormone polypeptides had a similar imprinting potential to the polypeptide hormone. The non-hormone polypeptides were also able to cross-imprint for one another, i.e. pre-exposure to one enhanced the binding capacity of the cells for the other on re-exposure, and vice versa. A single treatment with a polypeptide hormone or a non-hormone polypeptide did in itself stimulate the growth of the Tetrahymena for as long as 1 week.  相似文献   

3.
Chinese hamster ovary (CHO) cells and Chang liver cells which had already interacted with a hormone (gonadotropin, TSH, insulin) in culture, transmitted hormonal imprinting to virgin cells not previously involved in the interaction. The information associated with imprinting was not mediated by the nutrient medium, because the nutrient medium of the hormone-treated cells did not induce imprinting in virgin cells and even reduced rather than enhanced the hormone binding capacity thereof. Thus the transmission of information is in all probability associated with a direct cell-cell contact.  相似文献   

4.
The unicellular Tetrahymena is able to bind the vertebrate hormone insulin, and the binding sites presented by it become amplified under hormonal influence. The increased binding capacity for insulin reappears in many offspring generations. 5-azacytidine inhibits insulin binding and the insulin-induced formation of binding sites as well in the cell generation directly involved in interaction, but enhances insulin binding in the daughter cell generations. The nutrient medium of the cells whose binding capacity was enhanced by azacytidine treatment transmitted the information accounting for increased binding to "virgin" cells not previously treated with azacytidine.  相似文献   

5.
G Csaba  E Bohdaneczky  L K?hidai 《Cytobios》1991,67(269):77-83
Hormonal imprinting is transmitted from imprinted to virgin cells of the same cell line. No transmission of imprinting occurred between Chinese hamster ovary (CHO) and human Chang liver cells, and the presence of the latter reduced rather than enhanced the thyrotropic hormone (TSH) binding capacity of the CHO cells. While hormone binding capacity was relatively homogeneous in the control and the mixed cell cultures, it was not homogeneous in the homologous imprinted plus virgin cell population, indicating a continuous transmission of imprinting from the former to the latter.  相似文献   

6.
Primary interaction of TSH with the unicellular Tetrahymena accounted for an increase in TSH binding capacity on reexposure, i.e. for a regular hormonal imprinting. TSH in itself did not give rise to a faulty imprinting (for insulin). Combination of TSH with dibutyryl cAMP reduced the intensity of imprinting, whereas theophylline or lithium ions not only reduced the efficacy of normal imprinting, but also gave rise to faulty imprinting (for insulin instead of TSH).  相似文献   

7.
In canine thyrocytes in primary culture, our previous studies have identified three mitogenic agents and pathways: thyrotropin (TSH) acting through cyclic AMP (cAMP), EGF and its receptor tyrosine protein kinase, and the phorbol esters that stimulate protein kinase C. TSH enhances, while EGF and phorbol esters inhibit, the expression of differentiation. Given that growth and differentiation expression are often considered as mutually exclusive activities of the cells, it was conceivable that the differentiating action of TSH was restricted to noncycling (Go) cells, while the inhibition of the differentiation expression by EGF and phorbol esters only concerned proliferating cells. Therefore, the capacity to express the thyroglobulin (Tg) gene, the most prominent marker of differentiation in thyrocytes, was studied in proliferative cells (with insulin) and in quiescent cells (without insulin). Using cRNA in situ hybridization, we observed that TSH (and, to a lesser extent, insulin and insulin-like growth factor I) restored or maintained the expression of the Tg gene. Without these hormones, the Tg mRNA content became undetectable in most of the cells. EGF and 12-0-tetradecanoyl phorbol-13-acetate (TPA) inhibited the Tg mRNA accumulation induced by TSH (and/or insulin). Most of the cells (up to 90%) responded to both TSH and EGF. Nevertheless, the range of individual response was quite variable. The effects of TSH and EGF on differentiation expression were not dependent on insulin and can therefore be dissociated from their mitogenic effects. Cell cycling did not affect the induction of Tg gene. Indeed, the same cell distribution of Tg mRNA content was observed in quiescent cells stimulated by TSH alone, or in cells approximately 50% of which had performed one mitotic cycle in response to TSH + insulin. Moreover, after proliferation in "dedifferentiating" conditions (EGF + serum + insulin), thyrocytes had acquired a fusiform fibroblast-like morphology, and responded to TSH by regaining a characteristic epithelial shape and high Tg mRNA content. 32 h after the replacement of EGF by TSH, cells in mitosis presented the same distribution of the Tg mRNA content as the rest of the cell population. This implies that cell cycling (at least 27 h, as previously shown) did not affect the induction of the Tg gene which is clearly detectable after a time lag of at least 24 h. The data unequivocally show that the reexpression of differentiation and proliferative activity are separate but fully compatible processes when induced by cAMP in thyrocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have investigated the growth effects of thyrotropin (TSH) (mimicked by forskolin and acting through cyclic AMP), epidermal growth factor (EGF), serum (10%) and insulin on quiescent dog thyroid epithelial cells in primary culture in a serum-free defined medium. These cells were previously shown to retain the capacity to express major thyroid differentiation markers. In the presence of insulin and after a similar prereplicative phase of 18 +/- 2h, TSH, EGF, and serum promoted DNA synthesis in such quiescent cells only a minority of which had proliferated in vitro before stimulation. The combination of these factors induced more than 90% of the cells to enter S phase within 48 h and near exponetial proliferation. Analysis of the cell cycle parameters of the stimulated cells revealed that the G1 period duration was similar to the length of the prereplicative phase of quiescent thyroid cells; this might indicate that they were in fact in an early G1 stage rather than in G0 prior to stimulation. TSH and EGF action depended on or was potentiated by insulin. Strikingly, nanomolar concentrations of insulin were sufficient to support stimulation of DNA synthesis by TSH, while micromolar concentrations of insulin were required for the action of EGF. This suggests that insulin supported the action of TSH by acting on its own high affinity receptors, whereas its effect on EGF action would be related to its somatomedinlike effects at high supraphysiological concentrations. Insulin stimulated the progression in the prereplicative phase initiated by TSH or forskolin. In addition, in some primary cultures TSH must act together with insulin to stimulate early events of the prereplicative phase. In the presence of insulin, EGF, and forskolin, an adenylate cyclase activator, markedly synergized to induce DNA synthesis. Addition of forskolin 24 h after EGF or EGF 24 h after forskolin also resulted in amplification of the growth response but with a lag equal to the prereplicative period observed with the single compound. This indicates that events induced by the second factor can no longer be integrated during the prereplicative phase set by the first factor. These findings demonstrate the importance of synergistic cooperation between hormones and growth factors for the induction of DNA synthesis in epithelial thyroid cells and support the proposal that essentially different mitogenic pathways--cyclic AMP-dependent or independent--may coexist in one cell.  相似文献   

9.
The Daudi line of human lymphoblastoid cells requires insulin and transferrin for growth in serum-free medium and is highly sensitive to the inhibitory effect of human leukocyte interferon (IFN-alpha) on cell proliferation. A variant subline of Daudi cells, which is resistant to the antiproliferative action of IFN-alpha, also has been grown in serum-free medium containing insulin and transferrin. The proliferation of IFN-sensitive and -resistant Daudi cells is dependent on the occupancy of insulin receptors, with optimal cell proliferation observed at high receptor occupancy (nearly 100%). No evidence was found for receptors for insulin-like growth factor I on Daudi cells. IFN treatment of IFN-sensitive cells decreased the capacity of the cells to bind 125I-insulin. The altered binding capacity was due to diminished specific, lower affinity insulin binding, as detected at high 125I-insulin concentrations. Higher affinity insulin binding was not altered by IFN. Insulin binding was also reduced in detergent-solubilized extracts from IFN-treated sensitive Daudi cells and the magnitude of the effect was comparable to that observed in intact cells. This indicates that the total number of insulin binding sites (surface + internal) is decreased in IFN-treated sensitive cells. Insulin binding to IFN-sensitive cells decreased linearly with time between 6 and 48 h from the addition of IFN. The effect on lower affinity insulin binding developed more rapidly than the inhibitory effect of IFN on cell proliferation. The insulin-binding capacity of Daudi cells resistant to the antiproliferative effect of IFN was unaffected by IFN, despite the fact that these cells contain as many cell surface IFN receptors as sensitive cells. These observations raise the possibility that lower affinity insulin binding is important in the growth-promoting actions of insulin.  相似文献   

10.
The effect of sugars on 125I-thyroid-stimulating hormone binding to beef thyroid membranes was studied to determine their role in thyroid-stimulating hormone (TSH) binding. At 0.1 M concentration, N-acetylneuraminic acid produced a 3- to 7-fold increase in TSH binding, was the only sugar to enhance TSH binding, and did so whether binding was determined in the cyclase medium or under conditions of optimum binding. The enhanced TSH binding remained after the membranes were removed from the high NeuAc concentration and an effect was observed at concentrations of 10 mM NeuAc. NeuAc did not alter the kinetics of TSH binding but the pH optimum for TSH binding shifted from pH 5.5 to 7.5 in the presence of NeuAc. Incubation of the membranes with increasing concentrations of NeuAc resulted in increased sialic acid content of the membranes. The NeuAc concentration curve of membrane sialic acid and TSH binding were roughly parallel. The capacity of the low affinity site increased from 0.74 to 2.5 nmol/mg of protein in the presence of NeuAc. The apparent affinity (0.88 X 10(6) M-1) of this site was unaffected by NeuAc. With the high affinity site, NeuAc increased both the apparent affinity and capacity from 2.2 X 10(8)M-1 to 5.5 X 10(8) M-1 and 1.6 to 3.1 pmol/mg of protein, respectively. Neuraminidase or neuraminidase plus beta-galactosidase incubation of the membranes removed approximately 60% of the sialic acid from the membranes within 15 to 30 min but did not affect TSH binding. Large quantities of sialic acid were detected in the soluble fractions during isolation of the membranes, 4 to 5% of which was ultrafilterable and not associated with high molecular weight proteins. It is concluded that among the sugars tested, NeuAc exhibits an unique effect on TSH binding that may have physiological significance. The inability to alter TSH binding by enzymatic removal of endogenous sialic acid suggests that either NeuAc resistant to hydrolysis is sufficient to maintain TSH binding or that NeuAc important in TSH binding is removed during membrane preparation but is replaced by incubation with exogenous NeuAc.  相似文献   

11.
Regulation of thyrotropin (TSH) receptor (TSHr) mRNA accumulation as compared with two other thyroid differentiation markers (thyroglobulin and thyroperoxidase (TPO] has been investigated by Northern blot. In dogs in vivo, chronic stimulation of the thyroid TSHr mRNA although it increased the levels of thyroglobulin and TPO mRNA. In dogs treated with thyroxin, the quiescent thyroids expressed normal levels of TSHr and TPO mRNA but depressed levels of thyroglobulin mRNA. In primary cultures of dog thyrocytes, dedifferentiation of the cells by treatment with epidermal growth factor or 12-O-tetradecanoylphorbol-13-acetate led to decreased TSHr mRNA levels and nearly abolished thyroglobulin and TPO gene expression. However, TSHr mRNA was always present, compatible with the fact that these cells, when treated by TSH, reexpress differentiation. Treatment of the cells with TSH or forskolin transiently increased the TSHr mRNA level after 20 h, an effect inhibited by cycloheximide. This up-regulation was confirmed at the protein level: forskolin-treated cells showed an enhanced cAMP response to TSH and an increased binding of labeled TSH to their membranes. Long term TSH treatment led to a slight down-regulation of TSHr mRNA in dog thyrocytes, but in human thyroid cells no marked down-regulation was observed.  相似文献   

12.
The mitogenic/goitrogenic effects of thyrotropin (TSH) on human thyrocytes in vitro and in vivo depend on permissive comitogenic effects of insulin-like growth factors (IGFs), which are mimicked in vitro by the low-affinity binding of high supraphysiological concentrations of insulin to IGF-I receptors. Contrary to general assumption, we show here that very low concentrations of insulin, acting through insulin receptors but not IGF-I receptors, can also support the stimulation of DNA synthesis by TSH in primary cultures of normal human thyrocytes. Moreover, TSH through cAMP increases the content of insulin receptors demonstrated by Western blotting and the cells' responsiveness to low insulin concentrations. These observations provide the first in vitro evidence in normal human thyroid cells of a functional interaction between TSH and insulin acting through its own receptor.  相似文献   

13.
Thyrotropin (TSH) receptor mRNA levels in rat FRTL-5 thyroid cells are decreased by treatment with the calcium ionophores, A23187 or ionomycin, as well as with TSH, cholera toxin, forskolin, and 8-bromo-cAMP. Down regulation is, in each case, associated with a decrease in [125I]TSH binding and a decreased ability of TSH to increase cAMP levels. The ionophore does not alter cAMP levels and ethylene glycol-bis-(beta-aminoethyl ether) N, N'-tetraacetic acid (EGTA) in the medium prevents down regulation of TSH receptor mRNA levels by the ionophore, but not by TSH; the EGTA action is reversed by the simultaneous addition of Ca++. Whereas down regulation by TSH and its cAMP signal requires the presence of insulin and/or serum in the medium; down regulation by a calcium ionophore is still evident in their absence. Down regulation of TSH receptor mRNA levels and receptor desensitization by TSH/cAMP or an ionophore is lost in cells transfected with a full length TSH receptor cDNA devoid of regulatory elements, but able to reconstitute TSH receptor signal generation.  相似文献   

14.
Glucose tolerance, serum insulin, insulin receptors in epididymal fat tissue, circulating total cholesterol and triglyceride concentrations as well as serum prolactin were studied in obese and lean spontaneously hypertensive rats (SHR) of both sexes. Obese animals displayed insulin resistance and elevated insulin and triglyceride concentrations. Moreover, in obese rats the increased mass of epididymal fat tissue was accompanied with decreased capacity of high affinity binding sites of insulin receptors in the tissue plasma membranes. Terguride treatment lowered prolactin serum levels which was accompanied by ameliorated insulin sensitivity in obese animals of both sexes. In addition, terguride treatment decreased serum insulin and triglyceride concentrations in obese females and at the same time enhanced the affinity of high affinity insulin binding sites. Our results show that obesity in SHR is associated with a decreased capacity of insulin receptors and that prolactin may play a role in obesity-induced insulin resistance, particularly in female rats.  相似文献   

15.
Na-metavanadate and ouabain that act on Na+K(+)-ATPase had no influence on insulin binding to Tetrahymena immediately after treatment, but after 24 h considerably enhanced the binding capacity of generations of progeny. The increase in binding was of a similar magnitude to that elicited by insulin imprinting. Vanadate failed to increase the imprinting potential of insulin while ouabain even prevented insulin imprinting when administered together with insulin, but, did not affect imprinting when administered after insulin. By analogy with higher organisms it appears that inhibition of Na+K(+)-ATPase plays no role in the insulin-like effect of vanadate on the unicellular Tetrahymena, as judged also from the capacity to bind insulin of the generations of offspring.  相似文献   

16.
We examined the effect of insulin treatment on HTC cells transfected with large numbers of either normal insulin receptors (HTC-IR) or insulin receptors defective in tyrosine kinase (HTC-IR/M-1030). In both HTC-IR and HTC-IR/M-1030 cells, 20 h of insulin treatment (1 microM) at 37 degrees C resulted in a 65% decrease in the number of binding sites with a reciprocal 6-fold increase in affinity. In contrast, treatment with 10 nM insulin (20 h, 37 degrees C) also increased receptor affinity but had a smaller effect on the number of binding sites. 125I-Insulin binding to soluble receptors from HTC-IR and HTC-IR/M-1030 cells pretreated with insulin showed results similar to those obtained in intact cells. In both HTC-IR and HTC-IR/M-1030 cells, insulin enhanced insulin receptor degradation. In HTC-IR/M-1030 cells a 1-h incubation with insulin did not change receptor number and had only a small effect on receptor affinity; also there was no effect of insulin after a 20-h incubation at 15 degrees C. Inhibiting protein synthesis by pretreatment with cycloheximide (100 microM) did not block either the decrease in receptor number or the increase in receptor affinity. Both HTC-IR and HTC-IR/M-1030 cells exhibited a very slow rate of insulin and insulin receptor internalization and no differences were seen in this parameter when HTC-IR cells were compared to HTC-IR/M-1030 cells. These studies indicate, therefore, that in cells expressing kinase-defective insulin receptors, insulin down-regulates insulin receptor number via enhanced receptor degradation, and up-regulates receptor affinity. These effects were time- and temperature-dependent, but not dependent on new protein synthesis, and suggest that activation of tyrosine kinase may not be a prerequisite for certain mechanisms whereby insulin regulates its receptor.  相似文献   

17.
In order to determine the central or peripheral origin of the starvation-induced modifications of growth hormone (GH) and thyroid-stimulating hormone (TSH) secretions, the effects of starvation were studied in freely moving male rats with hypothalamo-hypophyseal disconnection. Five days after the disconnection GH secretion exhibited lower maximal values and higher trough levels and ultradian pulsatile secretion was lost as compared to controls. TSH levels were also decreased. The lesion did not modify pituitary somatostatin (SRIF) receptors as assessed by 125I-Tyr-O-D-Trp-8-SRIF binding or inhibition of adenylate cyclase activity. On the other hand, the growth hormone releasing factor (GRF) capacity to stimulate adenylate cyclase was strongly reduced by the lesion without modification of the affinity. Exposure to 72 h food deprivation decreased GH pulses and TSH levels in control rats but did not modify GH secretory profiles or TSH levels of lesioned rats. Plasma glucose and insulin levels were equally decreased after fasting in control and lesioned rats. Altogether, our results demonstrate that starvation-induced modifications of GH and TSH secretions are of central origin while glucose and insulin changes are peripherally triggered. They suggest that the hypothalamus is the only source of SRIF implicated in this effect.  相似文献   

18.
To investigate the effects of concanavalin A on insulin binding to R323AC mammary carcinomas, initial experiments were performed to characterize binding of concanavalin A. Concanavalin A binding was found to be specific and saturable. Equilibrium binding experiments demonstrated that addition of low concentration of concanavalin A enhanced the binding of [3H]concanavalin A, suggestive of positively cooperative interactions. Binding of concanavalin A was responsive to hormonal alterations; tumor cells from diabetic rats showed enhanced binding of concanavalin A and insulin compared to cells from intact rats and administration of insulin to diabetic rats returned concanavalin A and insulin binding to levels seen in controls. Incubation of tumor cells with concanavalin A prior to addition of 125I-labelled insulin resulted in a reduction of insulin-binding capacity; succinyl-concanavalin A did not affect binding of insulin. The percent inhibition of insulin binding by concanavalin A was highest at the lower insulin concentrations, providing a linearized Scatchard plot that yielded a calculated Kd value comparable to the low-affinity portion of the curvilinear Scatchard plot for insulin binding. The dissociation rate of bound insulin depended on receptor occupancy. Addition of concanavalin A after insulin binding reached equilibrium resulted in increased insulin binding hormone concentrations, decreased rates of dissociation of insulin and a loss of the correlation between receptor occupancy and dissociation rates. Concanavalin A alone demonstrated an insulin-like effect on glucose transport, which in these tumor cells represents a decrease in transport of 3-O-methylglucose. These suggest that binding of both concanavalin A and insulin to cells from this hormonally responsive neoplasm is under insulin regulation and demonstrates similar characteristics to those reported for a variety of normal cells. Furthermore, the interaction between concanavalin A and the cell membranes affects the affinity of the insulin receptor for insulin and appears to decrease the observed negative cooperativity.  相似文献   

19.
When HA-1 CHO cells were cultured in media with a range of fetal calf serum (FCS) concentrations, they became increasingly heat sensitive at low (5%) serum levels. Heat sensitization occurred concomitantly with increased insulin binding capacity. Insulin binding capacity also became more heat sensitive. Thermotolerance induced by a mild treatment (10 min/45 degrees C) 12 hr prior to assay, caused marked heat resistance expressed both as cell survival or insulin binding and abolished differences in sensitivity between the serum adapted cell lines.  相似文献   

20.
Preincubation of murine macrophage-like P388D1 cells with physiological amounts of insulin resulted in an increase in prostaglandin E2 binding to these cells, by approximately 2-fold, when compared to untreated cells. Scatchard analysis of the binding of PGE2 to insulin-treated cells indicated that the enhanced binding was due to an increase in receptor number (from 0.30 +/- 0.02 to 0.63 +/- 0.03 fmol/10(6) cells for the high affinity receptor binding sites, and from 2.4 +/- 0.31 to 5.0 +/- 0.41 fmol/10(6) cells for the low affinity receptor binding sites) rather than to an increase in the affinity of the binding sites. The insulin-stimulation of PGE2 binding appeared to be associated with a lowering of the cAMP level in these cells; treatment of cells with insulin lowered the cAMP level by increasing the cAMP phosphodiesterase activity of both the membrane and cytosolic fractions. However, enhanced PGE2 binding to the cells resulted in an increase in cAMP level in the cells. This increase in cAMP level may help to enhance the immunosuppressive action of this prostanoid, as PGE2 is known to suppress many steps in the immune response, including interleukin-1 expression, by raising cAMP levels via activation of receptor-linked adenylate cyclase. Our data suggest that insulin at physiological concentrations may enhance the immunosuppressive action of PGE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号