共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 microM. Increasing Ca2+(i) from 0.03 to 1,024 microM shifted the voltage for half maximal activation (V(1/2)) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) < or = 0.03 microM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same Po, were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of Po arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (approximately 0 through 1,024 microM), voltage (+80 to -80 mV), and Po (10(-4) to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel. 相似文献
4.
Olamendi-Portugal T García BI López-González I Van Der Walt J Dyason K Ulens C Tytgat J Felix R Darszon A Possani LD 《Biochemical and biophysical research communications》2002,299(4):562-568
This report describes the isolation, primary structure determination, and functional characterization of two similar toxins from the scorpion Parabuthus granulatus named kurtoxin-like I and II (KLI and KLII, respectively). KLII from P. granulatus is identical to kurtoxin from Parabuthus transvaalicus (a 63 amino-acid long toxin) whereas KLI is a new peptide containing 62 amino acid residues closely packed by four disulfide bridges with a molecular mass of 7244. Functional assays showed that both toxins, KLI and kurtoxin from P. granulatus, potently inhibit native voltage-gated T-type Ca(2+) channel activity in mouse male germ cells. In addition, KLI was shown to significantly affect the gating mechanisms of recombinant Na(+) channels and weakly block alpha(1)3.3Ca(V) channels expressed in Xenopus oocytes. KLI and kurtoxin from P. granulatus represent new probes to study the role of ion channels in germ cells, as well as in cardiac and neural tissue. 相似文献
5.
Wang D Hirase T Inoue T Node K 《Biochemical and biophysical research communications》2006,347(2):394-400
Ca2+ channels are involved in the regulation of vascular functions. Angiotensin II is implicated in the development of atherosclerosis and vascular remodeling. In this study, we demonstrated that angiotensin II preferentially increased the expression of alpha1G, a T-type Ca2+ channel subunit, via AT1 receptors in endothelial cells. Angiotensin II-induced expression of alpha1G was inhibited by pretreatment with atorvastatin and the MEK1/2 inhibitor, PD98059. The effect of atorvastatin was reversed by mevalonate and farnesyl pyrophosphate which implicates the activation of the small GTP-binding protein, Ras. Our data indicate that angiotensin II induces alpha1G expression in endothelial cells via AT1 receptors, Ras and MEK. Angiotensin II-induced migration of endothelial cells in a wound healing model was inhibited by incubation with mibefradil, a T-type Ca2+ channel blocker. Our data indicate that angiotensin II induces T-type Ca2+ channels in endothelial cells, which may play a role in the development of vascular disorders. 相似文献
6.
Bkaily Ghassan Sculptoreanu Adrian Jacques Danielle Jasmin Gaétan 《Molecular and cellular biochemistry》1997,176(1-2):199-204
In the present study, the whole-cell voltage clamp technique was used in order to record the T- and L-type Ca2+ currents in single heart cells of newborn and young normal and hereditary cardiomyopathic hamsters. Our results showed that the I/V relationship curve as well as the kinetics of the L-type Ca2+ currents (ICa(L)) in both normal and cardiomyopathic heart cells were the same. However, the proportion of myocytes from normal heart hamster that showed L-type ICa was less than that of heart cells from cardiomyopathic hamster. The I/V relationship curve of the T-type ICa (ICa(T)) was the same in myocytes of both normal and cardiomyopathic hamsters. The main differences between ICa(T) of cardiomyopathic and normal hamster are a larger window current and the proportion of ventricular myocytes that showed this type of current in cardiomyopathic hamster. The high density of ICa(T) as well as the large window current and proportion of myocytes showing ICa(T) may explain in part Ca2+ overload observed in cardiomyopathic heart cells of the hamster. 相似文献
7.
Fumiko Sekiguchi Yosuke Miyamoto Daiki Kanaoka Hiroki Ide Shigeru Yoshida Tsuyako Ohkubo Atsufumi Kawabata 《Biochemical and biophysical research communications》2014
Hydrogen sulfide (H2S), a gasotransmitter, is formed from l-cysteine by multiple enzymes including cystathionine-γ-lyase (CSE). We have shown that an H2S donor, NaHS, causes hyperalgesia in rodents, an effect inhibited by knockdown of Cav3.2 T-type Ca2+ channels (T-channels), and that NaHS facilitates T-channel-dependent currents (T-currents) in NG108-15 cells that naturally express Cav3.2. In the present study, we asked if endogenous and exogenous H2S participates in regulation of the channel functions in Cav3.2-transfected HEK293 (Cav3.2-HEK293) cells. dl-Propargylglycine (PPG), a CSE inhibitor, significantly decreased T-currents in Cav3.2-HEK293 cells, but not in NG108-15 cells. NaHS at 1.5 mM did not affect T-currents in Cav3.2-HEK293 cells, but enhanced T-currents in NG108-15 cells. In the presence of PPG, NaHS at 1.5 mM, but not 0.1–0.3 mM, increased T-currents in Cav3.2-HEK293 cells. Similarly, Na2S, another H2S donor, at 0.1–0.3 mM significantly increased T-currents in the presence, but not absence, of PPG in Cav3.2-HEK293 cells. Expression of CSE was detected at protein and mRNA levels in HEK293 cells. Intraplantar administration of Na2S, like NaHS, caused mechanical hyperalgesia, an effect blocked by NNC 55-0396, a T-channel inhibitor. The in vivo potency of Na2S was higher than NaHS. These results suggest that the function of Cav3.2 T-channels is tonically enhanced by endogenous H2S synthesized by CSE in Cav3.2-HEK293 cells, and that exogenous H2S is capable of enhancing Cav3.2 function when endogenous H2S production by CSE is inhibited. In addition, Na2S is considered a more potent H2S donor than NaHS in vitro as well as in vivo. 相似文献
8.
Anton Skopin Alexey Shalygin Vladimir Vigont Olga ZiminaLyubov Glushankova Galina N. MozhayevaElena Kaznacheyeva 《Biochimie》2013
TRPC1 is a major component of store-operated calcium entry in many cell types. In our previous studies, three types of endogenous store-operated calcium channels have been described in HEK293 cells, but it remained unknown which of these channels are composed of TRPC1 proteins. Here, this issue has been addressed by performing single-channel analysis in HEK293 cells transfected with anti-TRPC1 siRNA (siTPRC1) or a TPRC1-encoding plasmid. The results show that thapsigargin-or agonist-induced calcium influx is significantly attenuated in siTRPC1-transfected HEK293 cells. TRPC1 knockdown by siRNA results in the disappearance of store-operated Imax channels, while the properties of Imin and INS channels are unaffected. In HEK293 cells with overexpressed TRPC1 protein, the unitary current–voltage relationship of exogenous TRPC1 channels is almost linear, with a slope conductance of about 17 pS. The extrapolated reversal potential of expressed TRPC1 channels is +30 mV. Therefore, the main electrophysiological and regulatory properties of expressed TRPC1 and native Imax channels are identical. Moreover, TRPC1 overexpression in HEK293 cells results in an increased number of store-operated Imax channels. All these data allow us to conclude that TRPC1 protein forms native store-operated Imax channels but is not an essential subunit for other store-operated channel types in HEK293 cells. 相似文献
9.
Kim Y Park MK Uhm DY Chung S 《Biochemical and biophysical research communications》2007,358(3):796-801
Corticotrophin-releasing factor (CRF) is the main regulator of the body's stress axis and its signal is translated through G-protein-coupled CRF receptors (CRF-R1, CRF-R2). Even though CRF receptors are present in the midbrain dopamine neurons, the cellular mechanism of CRF action is not clear yet. Since voltage-dependent Ca(2+) channels are highly expressed and important in dopamine neuronal functions, we tested the effect of CRF on voltage-dependent Ca(2+) channels in MN9D cells, a model of dopamine neurons. The application of CRF-related peptide, urocortin 1, reversibly inhibited T-type Ca(2+) currents, which was a major Ca(2+) channel in the cells. The effect of urocortin was abolished by specific CRF-R1 antagonist and was mimicked by protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate. PKC inhibitors abolished the effect of urocortin. These results suggest that urocortin modulates T-type Ca(2+) channel by interacting with CRF-R1 via the activation of PKC signal pathway in MN9D cells. 相似文献
10.
Park WS Kang SH Son YK Kim N Ko JH Kim HK Ko EA Kim CD Han J 《Biochemical and biophysical research communications》2007,362(1):31-36
We examined the effects of the mitochondrial Ca(2+)-activated K(+) (mitoBK(Ca)) channel activator NS 1619 on L-type Ca(2+) channels in rat ventricular myocytes. NS 1619 inhibited the Ca(2+) current in a dose-dependent manner. NS 1619 shifted the activation curve to more positive potentials, but did not have a significant effect on the inactivation curve. Pretreatment with inhibitors of membrane BK(Ca) channel, mitoBK(Ca) channel, protein kinase C, protein kinase A, and protein kinase G had little effect on the Ca(2+) current and did not alter the inhibitory effect of NS 1619 significantly. The application of additional NS 1619 in the presence of isoproterenol, a selective beta-adrenoreceptor agonist, reduced the Ca(2+) current to approximately the same level as a single application of NS 1619. In conclusion, our results suggest that NS 1619 inhibits the Ca(2+) current independent of the mitoBK(Ca) channel and protein kinases. Since NS 1619 is widely used to study mitoBK(Ca) channel function, it is essential to verify these unexpected effects of NS 1619 before experimental data can be interpreted accurately. 相似文献
11.
We characterized the effects of intracellular Mg2+ (Mg2+i) on potassium currents mediated by the Kv1.5 and Kv2.1 channels expressed in Xenopus oocytes. Increase in Mg2+i caused a voltage-dependent block of the current amplitude, apparent acceleration of the current kinetics (explained by a corresponding shift in the steady-state activation) and leftward shifts in activation and inactivation dependencies for both channels. The voltage-dependent block was more potent for Kv2.1 [dissociation constant at 0 mV, Kd(0), was ~70 mM and the electric distance of the Mg2+ binding site, , was 0.2] than for the Kv1.5 channel [Kd(0)~40 mM and =0.1]. Similar shifts in the voltage-dependent parameters for both channels were described by the Gouy-Chapman formalism with the negative charge density of 1 e–/100 Å2. Additionally, Mg2+i selectively reduced a non-inactivating current and increased the accumulation of inactivation of the Kv1.5, but not the Kv2.1 channel. A potential functional role of the differential effects of Mg2+i on the Kv channels is discussed. 相似文献
12.
Scorpion toxins that block T-type Ca2+ channels in spermatogenic cells inhibit the sperm acrosome reaction 总被引:3,自引:0,他引:3
López-González I Olamendi-Portugal T De la Vega-Beltrán JL Van der Walt J Dyason K Possani LD Felix R Darszon A 《Biochemical and biophysical research communications》2003,300(2):408-414
The acrosome reaction (AR) is a Ca(2+)-dependent event required for sperm to fertilize the egg. The activation of T-type voltage-gated Ca(2+) channels plays a key role in the induction of this process. This report describes the actions of two toxins from the scorpion Parabuthus granulatus named kurtoxin-like I and II (KLI and KLII, respectively) on sperm Ca(2+) channels. Both toxins decrease T-type Ca(2+) channel activity in mouse spermatogenic cells and inhibit the AR in mature sperm. Saturating concentrations of the toxins inhibited at most approximately 70% of the whole-cell Ca(2+) current, suggesting the presence of a toxin-resistant component. In addition, both toxins inhibited approximately 60% of the AR, which is consistent with the participation of T-type Ca(2+) channels in the sperm AR. 相似文献
13.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly
elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine
receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor
(AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated
that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway.
Supported by the National Natural Science Foundation of China (Grant No. 200830870910). 相似文献
14.
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) in resting cells in an equilibrium between several influx and efflux mechanisms. Here we address the question of whether
capacitative Ca2+ entry to some extent is active at resting conditions and therefore is part of processes that guarantee a constant [Ca2+]cyt. We measured changes of [Ca2+]cyt in RBL-1 cells with fluorometric techniques. An increase of the extracellular [Ca2+] from 1.3 mM to 5 mM induced an incrase in [Ca2+]cyt from 105±10 nM to 145±8.5 nM. This increase could be inhibited by 10 μM Gd3+, 10 μM La3+ or 50 μM 2-aminoethoxydiphenyl borate, blockers of capacitative Ca2+ entry. Application of those blockers to a resting cell in a standard extracellular solution (1.3 mM Ca2+) resulted in a decrease of [Ca2+]cyt from 105±10 nM to 88.5±10 nM with La3+, from 103±12 to 89±12 nM with Gd3+ and from 102±12 nM to 89.5±5 nM with 2-aminoethoxydiphenyl borate. From these data, we conclude that capacitative Ca2+ entry beside its function in Ca2+ signaling contributes to the regulation of resting [Ca2+]cyt. 相似文献
15.
Aguiari G Campanella M Manzati E Pinton P Banzi M Moretti S Piva R Rizzuto R del Senno L 《Biochemical and biophysical research communications》2003,301(3):657-664
Polycystin-1 (PC1) is a membrane protein expressed in tubular epithelia of developing kidneys and in other ductal structures. Recent studies indicate this protein to be putatively important in regulating intracellular Ca(2+) levels in various cell types, but little evidence exists for kidney epithelial cells. Here we examined the role of the PC1 cytoplasmic tail on the activity of store operated Ca(2+) channels in human kidney epithelial HEK-293 cell line. Cells were transiently transfected with chimeric proteins containing 1-226 or 26-226 aa of the PC1 cytoplasmic tail fused to the transmembrane domain of the human Trk-A receptor: TrkPC1 wild-type and control Trk truncated peptides were expressed at comparable levels and localized at the plasma membrane. Ca(2+) measurements were performed in cells co-transfected with PC1 chimeras and the cytoplasmic Ca(2+)-sensitive photoprotein aequorin, upon activation of the phosphoinositide pathway by ATP, that, via purinoceptors, is coupled to the release of Ca(2+) from intracellular stores. The expression of TrkPC1 peptide, but not of its truncated form, enhanced the ATP-evoked cytosolic Ca(2+) concentrations. When Ca(2+) assays were performed in HeLa cells characterized by Ca(2+) stores greater than those of HEK-293 cells, the histamine-evoked cytosolic Ca(2+) increase was enhanced by TrkPC1 expression, even in absence of external Ca(2+). These observations indicate that the C-terminal tail of PC1 in kidney and other epithelial cells upregulates a Ca(2+) channel activity also involved in the release of intracellular stores. 相似文献
16.
Enn K. Seppet Frantisek Kolar Ian M. C. Dixon Tomoji Hata Naranjan S. Dhalla 《Molecular and cellular biochemistry》1993,129(2):145-159
In order to examine the regulatory role of thyroid hormone on sarcolemmal Ca2+-channels, Na+–Ca2+ exchange and Ca2+-pump as well as heart function, the effects of hypothyroidism and hyperthyroidism on rat heart performance and sarcolemmal Ca2+-handling were studied. Hyperthyroid rats showed higher values for heart rate (HR), maximal rates of ventricular pressure development+(dP/dt)max and pressure fall–(dP/dt)max, but shorter time to peak ventricular pressure (TPVP) and contraction time (CT) when compared with euthyroid rats. The left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP), as well as aortic systolic and diastolic pressures (ASP and ADP, respectively) were not significantly altered. Hypothyroid rats exhibited decreased values of LVSP, HR, ASP, ADP, +(dP/dt)max and –(dP/dt)max but higher CT when compared with euthyroid rats; the values of LVEDP and TPVP were not changed. Studies with isolated-perfused hearts showed that while hypothyroidism did not modulate the inotropic response to extracellular Ca2+ and Ca2+ channel blocker verapamil, hyperthyroidism increased sensitivity to Ca2+ and decreased sensitivity to verapamil in comparison to euthyroid hearts. Studies of [3H]-nitrendipine binding with purified cardiac sarcolemmal membrane revealed decreased number of high affinity binding sites (Bmax) without any change in the dissociation constant for receptor-ligand complex (Kd) in the hyperthyroid group when compared with euthyroid sarcolemma; hypothyroidism had no effect on these parameters. The activities of sarcolemmal Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake and ouabain-sensitive Na+–K+ ATPase were decreased whereas the Mg2+-ATPase activity was increased in hypothyroid hearts. On the other hand, sarcolemmal membranes from hyperthyroid samples exhibited increased ouabain-sensitive Na+–K+ ATPase activity, whereas Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake, and Mg2+-ATPase activities were unchanged. The Vmax and Ka for Ca2+ of cardiac sarcolemmal Na+–Ca2+ exchange were not altered in both hyperthyroid and hypothyroid states. These results indicate that the status of sarcolemmal Ca2+-transport processes is regulated by thyroid hormones and the modification of Ca2+-fluxes across the sarcolemmal membrane may play a crucial role in the development of thyroid state-dependent contractile changes in the heart. 相似文献
17.
Zhang Yu-an Takashi Imanishi Tetsuyuki Wada Seiji Ichida 《Neurochemical research》1999,24(8):1059-1066
The proportions of calcium (Ca2+) channel subtypes in chick or rat P2 fraction and NG 108-15 cells were investigated using selective L-, N-, P- and P/Q- type Ca2+ channel blockers. KCl-stimulated 45Ca2+ uptake by chick P2 fraction was blocked by 40~50% using N-type Ca2+ channel blockers [-conotoxin GVIA, aminoglycoside antibiotics and dynorphin A(1–13)], but was not inhibited by P- or P/Q-type blockers (-agatoxin IVA or -conotoxin MVIIC). On the other hand, KCl-stimulated 45Ca2+ uptake by rat P2 fraction was blocked by 30~40% using P- or P/Q-type Ca2+ channel blockers, but was not inhibited by N-type Ca2+ channel blockers. The L-type Ca2+ channel blockers 1,4-dihydropyridines, diltiazem and verapamil, but not calciseptine (CaS), inhibited both KCl-stimulated 45Ca2+ uptake and veratridine-induced 22Na+ uptake by chick or rat P2 fraction with similar IC50 values. CaS did not have any effect on 45Ca2+ uptake by either chick or rat P2 fraction. In NG108-15 cells, CaS, -agatoxin IVA and -conotoxin MVIIC, but not -conotoxin GVIA, inhibited KCl-stimulated 45Ca2+ uptake by 30–40%. Various combinations of these Ca2+ channel blockers had no significant additional effects in chick or rat P2 fraction or NG 108-15 cells. These findings suggest that KCl-stimulated 45Ca2+ uptake by chick or rat P2 fraction and NG 108-15 cells is a convenient and useful model for screening whether or not natural or synthetic substances have selective effects as L-, N-, P-, or P/Q- type Ca2+ channel antagonists or agonists. 相似文献
18.
A role of pertussis toxin (PTX)-sensitive pathway in regulation of glucose-stimulated Ca2+ signaling in rat islet beta-cells was investigated by using clonidine as a selective agonist to alpha2-adrenoceptors which link to the pathway. An elevation of extracellular glucose concentration from 5.5 to 22.2 mM (glucose stimulation) increased the levels of [Ca2+]i of beta-cells, and clonidine reversibly reduced the elevated levels of [Ca2+]i. This clonidine effect was antagonized by yohimbine, and abolished in beta-cells pre-treated with PTX. Clonidine showed little effect on membrane currents including those through ATP-sensitive K+ channels induced by voltage ramps from -90 to -50 mV. Clonidine showed little effect on the magnitude of whole-cell currents through L-type Ca2+ channels (ICa(L)), but increased the inactivation process of the currents. Clonidine increased the magnitude of the voltage-dependent K+ currents (IVK). These clonidine effects on ICa(L) and IVK were abolished in beta-cells treated with PTX or GDP-betaS. These results suggest that the PTX-sensitive pathway increases IVK activity and decreases ICa(L) activity of islet beta-cells, resulting in a decrease in the levels of [Ca2+]i elevated by depolarization-induced Ca2+ entry. This mechanism seems responsible at least in part for well-known inhibitory action of PTX-sensitive pathway on glucose-stimulated insulin secretion from islet beta-cells. 相似文献
19.
Summary Using Ca2+- and K+-selective microelectrodes, the cytosolic free Ca2+ and K+ concentrations were measured in mouse fibroblastic L cells. When the extracellular Ca2+ concentration exceeded several micromoles, spontaneous oscillations of the intracellular free Ca2+ concentration were observed in the submicromolar ranges. During the Ca2+ oscillations, the membrane potential was found to oscillate concomitantly. The peak of cyclic increases in the free Ca2+ level coincided in time with the peak of periodic hyperpolarizations. Both oscillations were abolished by reducing the extracellular Ca2+ concentration down to 10–7
m or by applying a Ca2+ channel blocker, nifedipine (50 m). In the presence of 0.5mm quinine, an inhibitor of Ca2+-activated K+ channel, sizable Ca2+ oscillations still persisted, while the potential oscillations were markedly suppressed. Oscillations of the intracellular K+ concentration between about 145 and 140mm were often associated with the potential oscillations. The minimum phase of the K+ concentration was always 5 to 6 sec behind the peak hyperpolarization. Thus, it is concluded that the oscillation of membrane potential results from oscillatory increases in the intracellular Ca2+ level, which, in turn, periodically stimulate Ca2+-activated K+ channels. 相似文献
20.
Voltage-gated Ca2+ channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca2+ over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca2+ permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca2+-channel α1 subunits, Cav3.1, Cav3.2 and Cav3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Cav3.1, Cav3.2, and Cav3.3 functionally expressed in Xenopus oocytes. Our data show that all Cav3 channels select Ca2+ over Na+ by affinity. Cav3.1 and Cav3.2 discriminate Ca2+, Sr2+ and Ba2+ based on the ion's effects on the open channel probability, whilst Cav3.3 discriminates based on the ion's intrapore binding affinity. All Cav3s were characterized by much smaller difference in the KD values for Na+ current blockade by Ca2+ (KD1 ∼ 6 μM) and for Ca2+ current saturation (KD2 ∼ 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na+/Ca2+ current at close to physiological Ca2+ concentrations, which was the strongest for Cav3.3, smaller for Cav3.2 and the smallest for Cav3.1. In addition to intrapore Ca2+ binding site(s) Cav3.2, but not Cav3.1 and Cav3.3, is likely to possess an extracellular Ca2+ binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca2+ current in native cells. 相似文献