首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
d-Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate:NADP+ 1-oxidoreductase EC 1.1.1.49) has been purified from bakers' yeast by liquid-liquid extraction using phase-restricted triazine dyes (Procion Yellow HE-3G, Procion Olive MX-3G, Procion Navy MX-RB and Cibacron Blue F3G-A). This method was combined with fractional precipitation with poly(ethylene) glycol) and batchwise treatment with DEAE-cellulose. This rapid procedure gave an enzyme preparation with a specific activity of 0.92 kat per kg protein within 5 h. The affinity extraction step can easily be scaled up and the good recovery of ligand-poly(ethylene glycol) should make the process useful for larger amounts of enzyme. The technical possibilities are discussed.  相似文献   

2.
The enzymes glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 3-phosphoglycerate kinase (EC 2.7.2.3), present in an extract of Bakers' yeast, are largely kept in solution by minor amounts of polyethylene glycol-bound triazine dyes (Procion yellow HE-3G and Procion olive MX-3G) even when the solution contains such concentrations of polyethylene glycol (12.5% w/w) which normally precipitate the enzymes. The specific prevention from precipitation can be used for purification of enzyme, preferentially in dealing with crude extracts, which has been demonstrated in this work. A 3.4-fold purification of glucose-6-phosphate dehydrogenase has been achieved with good recovery (93%). Further purification has been possible by combining the recovered (enzyme-containing) supernatant liquid with a solution of dextran which generates an aqueous two-phase system. The lower, dextran-containing phase extracts part of the remaining bulk proteins leaving the target enzyme in the upper phase. The advantages of this method for enzyme purification in large scale are discussed.  相似文献   

3.
Synthesis of conjugates of the ethylene oxide/propylene oxide copolymer UCON 50-HB-5100 and the triazine dyes Cibacron Blue F3G-A and Procion Yellow HE-3G is described. The UCON-dye conjugate of Procion Yellow HE-3G is used as a ligand for affinity partitioning of glucose-6-phosphate dehydrogenase from bakers' yeast. The enzyme is first partitioned in a two-phase system composed of UCON, UCON-ligand and dextran, and the two phases isolated in separate containers. A small amount of salt is then added to the upper phase, which contains the UCON-ligand-enzyme complex, and the temperature increased above the cloud point of the UCON polymer to give a new two-phase system. The new two-phase system consists of an upper salt/water phase containing free enzyme and a lower UCON/water phase containing free UCON-ligand. Temperature-induced phase partitioning is thus seen to be of much assistance in dissociating enzyme-ligand complex, recovering enzyme and recycling UCON-ligand.  相似文献   

4.
The application of a number of immobilized Procion dyes to the purification of inosine 5′-monophosphate dehydrogenase (EC 1.2.1.14) from Escherichia coli has been investigated. The enzyme is adsorbed to a number of these immobilized dyes and can be eluted by salt gradients with very substantial increases in specific activity. For example, adsorption of the enzyme from a crude cell-free extract of E. coli to immobilized Procion yellow MX-8G in the presence of 15% (vv) ethylene glycol and subsequent elution with a salt gradient yields an enzyme preparation approximately 90% pure by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is quantitatively recovered with an overall increase in specific activity of 14-fold compared to the enzyme in the cell-free extract.  相似文献   

5.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

6.
The effects of low temperature (−18°C) on the stability and partitioning of some glycolytic enzymes within an aqueous two-phase system were studied. The enzymes were phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase present in a crude extract of bakers' yeast. The partitioning of pure phosphofructokinase, isolated from bakers' yeast, was also examined. The two-phase systems were composed of water, poly(ethylene glycol), dextran, and ethylene glycol and buffer. The influence on the partitioning of the presence of ethylene glycol, phenylmethylsulfonyl fluoride and poly(ethylene glycol)-bound Cibacron Blue F3G-A was investigated at −18, 0 and (in some cases) 20°C. The presence of ethylene glycol, phase polymers and low temperature stabilized all three enzyme activities. Cibacron Blue, an affinity ligand for phosphofructokinase, increased its partitioning into the upper phase with decreasing temperature. Depending on the conditions, various amounts of the enzymes were recovered at the interface, also in systems not containing ethylene glycol. The implications of the observed effects on the use of aqueous two-phase systems for the extraction and fractionation of proteins are discussed.  相似文献   

7.
Malate dehydrogenase (MDH) and glucose 6-phosphate dehydrogenase (G6PDH) have been partially purified from preparations of homogenized yeast cells using Procion Yellow H-E3G and Procion Red H-E7B, respectively, immobilized on solid perfluoropolymer supports in an expanded bed. A series of pilot experiments were carried out in small packed beds using clarified homogenate to determine the optimal elution conditions for both MDH and G6PDH. Selective elution of MDH using NADH was effective but the yields obtained were dependent on the concentration of NADH used. Selective elution was found to be most effective when a low concentration of NaCl (0.1 M) was present. MDH could be recovered in 84% yield with a purification factor of 94 when this strategy was adopted. In the case of G6PDH, specific elution using NADP(+) was successful in purifying G6PDH 178-fold in 96% yield. The dynamic capacity of both affinity supports was estimated by frontal analysis, in an expanded bed with unclarified homogenate, and corresponded to 17 U MDH/mL of settled Procion Yellow H-E3G perfluoropolymer support and 7.7 U H6PDH/mL of settled Procion Red H-E7B perfluoropolymer support. Expanded bed affinity chromatography of MDH resulted in an eluted fraction containing 89% of the applied activity with a purification factor of 113. Expanded bed affinity chromatography of G6PDH resulted in an eluted fraction containing 84% of the applied activity with a purification factor of 172. With both enzymes, the overall recovery of enzyme activity was greater than 94%, showing that the expanded bed approach to purification was nondenaturing. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
The utilization of isocratic, reverse-phase, ion-paired high-performance liquid chromatography for analysis of creatine phosphate allows for rapid quantification of multiple samples. Cryogenic sample handling and the addition of ethylene glycol bis(β-aminoethyl ether) N,N′-tetraacetic acid as a Ca2+ sequestering agent during perchloric acid extraction enhance maximal recovery of creatine phosphate from brain samples. Peak identification is supported by a complete enzymatic shift with a phosphocreatine kinase, hexokinase, and glucose-6-phosphate dehydrogenase system.  相似文献   

9.
Immobilization of penicillin acylase on acrylic carriers   总被引:2,自引:0,他引:2  
Penicillin acylase obtained from E. Coli (E. C. 3.5.1.11) was covalently bound via glutaric aldehyde to acrylic carriers crosslinked with divinylbenzene or ethylene glycol dimethacrylate. The best enzymatic preparation was obtained by using ethyl acrylate/ ethylene glycol dimethacrylate copolymer. 1 cm3 of the carrier bound 6.4 mg of protein, having 72% activity in relation to the native enzyme. The preparation lost only 10% of its initial activity after 100 d of storage at 4°C. A negligible effect of immobilization on the enzyme activity at different temperatures or pH as well as significant increase of the stability of the immobilized enzyme at elevated temperatures were observed.Abbreviations BA butyl acrylate - AE ethyl acrylate - PA penicillin acylase - 6-APA 6-aminopenicillanic acid - EGDMA ethylene glycol dimethacrylate - DVB divinylbenzene  相似文献   

10.
Interactions of glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), triose-phosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1), phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1), phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.3), enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11), pyruvate kinase (ATP:Pyruvate O2-phosphotransferase, EC 2.7.1.40) and lactate dehydrogenase [S)-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with F-actin, among the glycolytic enzymes listed above, and with phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) were studied in the presence of poly(ethylene glycol). Both purified rabbit muscle enzymes and rabbit muscle myogen, a high-speed supernatant fraction containing the glycolytic enzymes, were used to study enzyme-F-actin interactions. Following ultracentrifugation, F-actin and poly(ethylene glycol) tended to increase and KCl to decrease the pelleting of enzymes. In general, the greater part of the pelleting occurred in the presence of both F-actin and poly(ethylene glycol) and the absence of KCl. Enzymes that pelleted more in myogen preparations than as individual purified enzymes in the presence of poly(ethylene glycol) and the absence of F-actin were tested for specific enzyme-enzyme associations, several of which were observed. Such interactions support the view that the internal cell structure is composed of proteins that interact with one another to form the microtrabecular lattice.  相似文献   

11.
Rapid liquid-liquid extraction of lactate dehydrogenase from muscle by using a low-cost aqueous bipolymer two-phase system was achieved by using a centrifugal separator. Extraction of the target enzyme into the upper phase was enhanced by including the dye Procion yellow HE-3G (bound to polyethylene glycol). The dye acted as an affinity ligand for the enzyme. The isolation of the enzyme was carried out either by using a cell extract or by homogenizing the muscle directly in the system. The latter approach reduced the preparation time with a factor of 0.25. The two methods gave, respectively, 310 and 360 kU lactate dehydrogenase/kg muscle (measured at 22 degrees C). By using a small centrifugal separator, Alfa Laval LAPX 202, 3-5 kg muscle could be processed/h in a 30-L, two-phase system.  相似文献   

12.
The graft modification of dextran with benzoyl groups has been studied. The factors that affect the degree of substitution of benzoyl dextran were investigated. Phase diagrams for aqueous two-phase systems composed of polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran have been determined. Phase separation was also obtained in aqueous solution of two benzoyl dextran polymers with different degrees of substitution. A four-phase system was obtained with a mixture of polyethylene glycol, dextran and two kinds of benzoyl dextrans. The partitioning of methylene blue and a Procion yellow HE-3G dextran derivative were studied in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems and in systems of two benzoyl dextrans differing in degree of substitution. The proteins bovine serum albumin and glucose-6-phosphate dehydrogenase were partitioned in polyethylene glycol/benzoyl dextran aqueous two-phase systems and the effect of the degree of substitution of benzoyl dextran was studied. Chlorella pyrenoidosa, thylakoid membrane vesicles, plasma membrane vesicles and chloroplasts were partitioned in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems, and in a polyethylene glycol/dextran/benzoyl dextran four-phase system.  相似文献   

13.
The interaction of yeast hexokinase with Procion Green H-4G.   总被引:4,自引:3,他引:1       下载免费PDF全文
1. A number of reactive triazine dyes specifically and irreversibly inactive yeast hexokinase at pH 8.5 and 33 degrees C. Under these conditions, the enzyme is readily inactivated by 100 microM-Procion Green H-4G, Blue H-B, Turquoise H-7G and Turquoise H-A, is less readily inactivated by Procion Brown H-2G. Green HE-4BD, Red HE-3B and Yellow H-5G and is not inactivated at all by Procion Yellow H-A. 2. The inactivation of hexokinase by Procion Green H-4G is competitively inhibited by the adenine nucleotides ATP and ADP and the sugar substrates D-glucose, D-mannose and D-fructose but not by nonsubstrates such as D-arabinose and D-galactose. 3. Quantitatively inhibited hexokinase contains approx. 1 mol of dye per mol of monomer of mol.wt. 51000. The inhibition is irreversible and activity cannot be recovered on incubation with high concentration (20 mM) of ATP or D-glucose. 4. Mg2+ protects the enzyme against inactivation by Procion Green H-4G but enhances the rate of inactivation by all the other Procion dyes tested. In the presence of 10 mM-Mg2+ the apparent dissociation constant between enzyme and dye is reduced from 199.0 microM to 41.6 microM. Binding of the dye to hexokinase is accompanied by characteristic spectral changes in the range 560-700 nm. 5. Mg2+ promotes binding of yeast hexokinase to agarose-immobilized Procion Green H-4G but not to the other dyes tested. Elution could be effected by omission of Mg2+ from the column irrigants or by inclusion of MgATP or D-glucose, but not by D-galactose. These effects can be exploited to purify hexokinase from crude yeast extracts. 6. The specific active-site-directed binding of triazine dyes to yeast hexokinase is interpreted in terms of the crystallographic structure of the hexokinase monomer.  相似文献   

14.
A specific colorimetric assay for the determination of glucose-6-phosphate (G6P) was developed. This assay is based on the oxidation of G6P in the presence of glucose-6-phosphate dehydrogenase (G6PD) and nicotinamide adenine dinucleotide phosphate (NADP+); the NADPH thereby generated reduces the tetrazolium salt WST-1 [2-(4-indophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium, monosodium salt] to water-soluble yellow-colored formazan with 1-methoxy-5-methylphenazium methylsulfate (1-mPMS) as an electron carrier. The assay is optimized for reaction buffer pH, enzyme/dye concentration, and reaction time course. The limit of detection of the assay is 0.15 μM (15 pmol/well). The usefulness of the assay is demonstrated by the accurate measurement of the G6P concentration in fetal bovine serum (FBS).  相似文献   

15.
The interaction of glyceraldehyde 3-phosphate dehydrogenase with microtubules has been studied by measurement of the amount of enzyme which co-assembles with in vitro reconstituted microtubules. The binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules is a saturable process; the maximum binding capacity is about 0.1 mole of enzyme bound per mole of assembled tubulin. Half saturation of microtubule binding sites is obtained at a concentration of glyceraldehyde 3-phosphate dehydrogenase of about 0.5 µM Glyceraldehyde 3-phosphate dehydrogenase (between 0.1 and 2 µM) induces a concentration-dependent increase a) in the turbidity of the microtubule suspension without alteration of the net amount of polymer formed and b) in the amount of microtubule protein polymers after cold microtubule disassembly. There is a linear relationship between the intensity of the glyceraldehyde 3-phosphate dehydrogenase-induced effects and the amount of microtubule-bound enzyme. The specificity of the association of glyceraldehyde 3-phosphate dehydrogenase to microtubules has been documented by copolymerization experiments. Assembly-disassembly cycles of purified microtubules in the presence of a crude liver soluble fraction results in the selective extraction of a protein with an apparent molecular weight of 35 000 identified as the monomer of glyceraldehyde 3-phosphate dehydrogenase by peptide mapping and immunoblotting.In conclusion, microtubules possess a limited number of binding sites for glyceraldehyde 3-phosphate dehydrogenase. The binding of the glycolytic enzyme to microtubules shows a considerable specificity and is associated with alterations of assembly and disassembly characteristics of microtubules.Abbreviations Mes 2(N-morpholinoethane) sulfonic acid - EGTA ethylene glycol bis (-aminoethyl-ester)N,N,N,N tetraacetic acid - EDTA thylene diamine tetraacetic acid  相似文献   

16.
Ethylene glycol oligomers have been studied systematically as non-nucleotide loop replacements in short hairpin oligoribonucleotides. Structural optimization concerns the length of the linkers and is based on the thermodynamic stabilities of the corresponding duplexes. The optimum linker is derived from heptakis (ethylene glycol) provided that the duplex end to be bridged comprises solely the terminal base pair; the optimum linker is derived from hexakis(ethylene glycol) if a dangling unpaired nucleotide is incorporated into the loop. Moreover, these linkers have been compared to other commonly used linker types which consist of repeating units of tris- or tetrakis(ethylene glycol) phosphate, or of 3-hydroxypropane-1-phosphate. In all cases, the correlation between linker length and duplex stability is independent of the kind of counter ions used (Na+, Na+/Mg2+, K+ or Li+). Furthermore, all duplexes with non-nucleotide loop replacements are less stable than those with the corresponding standard nucleotide loop. The results corroborate that the linkers are solvent-exposed and do not specifically interfere with the terminal nucleotides at the bridged duplex end.  相似文献   

17.
Impact of exogenous calcium and ethylene glycol tetraacetic acid (EGTA) supplement on chickpea (Cicer arietinum L.) germinating seeds exposed to cadmium stress for 6 days was studied. Ca and EGTA late treatment (3 days) alleviated growth inhibition and decreased Cd accumulation as well as lipid peroxidation and protein carbonylation in both root and shoot cells. Exogenous effector application relieved Cd-induced cell death which was associated with a constant level of ATP, which was considered as an apoptotic-like process. Redox balance was examined through the study of the redox state of pyridine nucleotide couples NAD+/NADH and NADP+/NADPH as well as their related oxidative [NAD(P)H-oxidase] and dehydrogenase (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and malate dehydrogenase) enzyme activities. The present research illustrated an ameliorative effect of Ca and EGTA on growth of Cd-exposed chickpea seedlings that occurs through the protection of sensitive cell sites from Cd-induced oxidation, namely membrane lipids and proteins, rather than the improvement of recycling capabilities of the cellular reducing power.  相似文献   

18.
W J Armitage  D E Pegg 《Cryobiology》1979,16(2):152-160
Following the failure of hearts to recover function after freezing at ?20 ° in the presence of 3 m ethylene glycol, a variety of experimental treatments was devised to determine the relative harmfulness of ice, high concentrations of electrolytes and high ethylene glycol concentration. Neither cooling to ?20 °C without freezing in a Ca2+-free solution containing twice the normal salt concentration and 6 m ethylene glycol (freezing 3 m ethylene glycol at ?20 °C doubles the solute concentration in the liquid phase), nor perfusion at ?1 °C with this solution were conducive to the recovery of hearts. However, perfusion with Ca2+-free 3 m ethylene glycol solution with twice the normal concentration of salts did allow full recovery of function, whereas perfusion with Ca2+-free 6 m ethylene glycol solution with normal salt concentrations did not. Therefore, the high ethylene glycol concentration encountered during freezing was the main cause of damage.  相似文献   

19.
Glycolytic enzyme interactions with tubulin and microtubules   总被引:2,自引:0,他引:2  
Interactions of the glycolytic enzymes glucose-6-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, enolase, phosphoglycerate mutase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase type-M, and lactate dehydrogenase type-H with tubulin and microtubules were studied. Lactate dehydrogenase type-M, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase demonstrated the greatest amount of co-pelleting with microtubules. The presence of 7% poly(ethylene glycol) increased co-pelleting of the latter four enzymes and two other enzymes, glucose-6-phosphate isomerase, and phosphoglycerate kinase with microtubules. Interactions also were characterized by fluorescence anisotropy. Since the KD values of glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase for tubulin and microtubules were all found to be between 1 and 4 microM, which is in the range of enzyme concentration in cells, these enzymes are probably bound to microtubules in vivo. These observations indicate that interactions of cytosolic proteins, such as the glycolytic enzymes, with cytoskeletal components, such as microtubules, may play a structural role in the formation of the microtrabecular lattice.  相似文献   

20.
N6-(2-carboxyethyl)-NAD was prepared by alkylation of NAD with 3-iodopropionic acid instead of propiolactone, which is not commercially available now because of its carcinogenicity. This new method had the advantage of forming fewer by-products during the reaction. New methods for purification of diaminopoly (ethylene glycol) and poly (ethylene glycol)-bound NAD(H) were also described. As a results, it was possible to prepare highly purified PEG-NADH and PEG-NAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号