首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have confirmed previous demonstrations of sodium gradient-stimulated transport ofl-alanine, phenylalanine, proline, and -alanine, and in addition demonstrated transport of N-methylamino-isobutyric acid (MeAIB) and lysine in isolated rabbit kidney brush border vesicles. In order to probe the multiplicity of transport pathways available to each of these14C-amino acids, we measured the ability of test amino acids to inhibit tracer uptake. To obtain a rough estimate of nonspecific effects, e.g., dissipation of the transmembrane sodium electrochemical potential gradient, we measured the ability ofd-glucose to inhibit tracer uptake.l-alanine and phenylalanine were completely mutually inhibitory. Roughly 75% of the14C-l-alanine uptake could be inhibited by proline and -alanine, while lysine and MeAIB were no more effective thand-glucose. Roughly 50% of the14C-phenylalanine uptake could be inhibited by proline and -alanine; lysine was as effective as proline and -alanine, and the effects of pairs of these amino acids at 50mm each were not cumulative. MeAIB was no more effective thand-glucose. We conclude that three pathways mediate the uptake of neutral,l, -amino acids. One system is inaccessible to lysine, proline, and -alanine. The second system carries a major fraction of thel-alanine flux; it is sensitive to proline and -alanine, but not to lysine. The third system carries half the14C-phenylalanine flux, and it is sensitive to proline, lysine, and -alanine. Since the neutral,l, -amino acid fluxes are insensitive to MeAIB, we conclude that they are not mediated by the classicalA system, and since all of thel-alanine flux is inhibited by phenylalanine, we conclude that it is not mediated by the classicalASC system.l-alanine and phenylalanine completely inhibit uptake of lysine. MeAIB is no more effective thand-glucose in inhibiting lysine uptake, while proline and -alanine appear to inhibit a component of the lysine flux. We conclude that the14C-lysine fluxes are mediated by two systems, one, shared with phenylalanine, which is inhibited by proline, -alanine, andl-alanine, and one which is inhibited byl-alanine and phenylalanine but inaccessible to proline, -alanine, and MeAIB. Fluxes of14C-proline and14C-MeAIB are completely inhibited byl-alanine, phenylalanine, proline, and MeAIB, but they are insensitive to lysine. Proline and MeAIB, as well as alanine and phenylalanine, but not lysine, inhibit14C--alanine uptake. However, -alanine inhibits only 38% of the14C-proline uptake and 57% of the MeAIB uptake. We conclude that two systems mediate uptake of proline and MeAIB, and that one of these systems also transports -alanine.  相似文献   

2.
Summary In brush border membrane vesicles from the midgut ofPhilosamia cynthia larvae (Lepidoptera) thel- andd-alanine uptake is dependent on a potassium gradient and on transmembrane electrical potential difference. Each isomer inhibits the uptake of the other form: inhibition ofl-alanine uptake byd-alanine is competitive, whereas inhibition ofd-alanine uptake byl-alanine is noncompetitive. Transstimulation experiments as well as the different pattern of specificity to cations suggest the existence of two transport systems. Kinetic parameters for the two transporters have been calculated both when Kout>Kin and Kout=Kin.d-alanine is actively transported also by the whole midgut, but it is not metabolized by the intestinal tissue.  相似文献   

3.
Amino acids enter rabbit jejunal brush border membrane vesicles via three major transport systems: (1) simple passive diffusion; (2) Na-independent carriers; and (3) Na-dependent carriers. The passive permeability sequence of amino acids is very similar to that observed in other studies involving natural and artificial membranes. Based on uptake kinetics and cross-inhibition profiles, at least two Na-independent and three Na-dependent carrier-mediated pathways exist. One Na-independent pathway, similar to the classical L system, favors neutral amino acids, while the other pathway favors dibasic amino acids such as lysine. One Na-dependent pathway primarily serves neutral L-amino acids including 2-amino-2-norbornanecarboxylic acid hemihydrate (BCH), but not beta-alanine or alpha-methylaminoisobutyric acid (MeAIB). Another Na-dependent route favors phenylalanine and methionine, while the third pathway is selective for imino acids and MeAIB. Li is unable to substitute for Na in these systems. Cross-inhibition profiles indicated that none of the Na-dependent systems conform to classical A or ACS paradigms. Other notable features of jejunal brush border vesicles include (1) no beta-alanine carrier, and (2) no major proline/glycine interactions.  相似文献   

4.
Summary The ion permeability of rabbit jejunal brush border membrane vesicles was studied by measuring unidirectional fluxes with radioactive tracers and bi-ionic diffusion potentials with the potential-sensitive fluorescent dye, diS–C3-(5). Tracer measurements provide estimates of the absolute magnitudes of permeability coefficients, while fluorescence measurements provide estimates of relative and absolute ion permeabilities. The magnitudes of the permeability coefficients for Na+, K+, Rb+, and Br were approximately 5 nanoliters/(mg protein × sec) or 10–5 cm/sec as determined by radioactive tracer measurements. The apparent selectivity sequence, relative to Na+, as determined by bi-ionic potential measurements was: F, isetheionate, gluconate, choline (<0.1)+(1.0)–(1.5)=NO 3 (1.5)–(2.3)+(2.4)+(2.5)+(2.6)+(3.9) 4 +(12)–(40). The origin of this selectivity sequence and its relationship to the ion permeability of the brush border membrane in the intact epithelium are discussed.  相似文献   

5.
Isolated brush-border membrane vesicles prepared from human placenta are known to transport amino acids via a Na+-dependent mechanism akin to that found in gut and kidney vesicle preparations. We studied sulfate transport in placental vesicles and failed to identify any Na+-dependent uptake mechanism. Rather, uptake is a non-electrogenic process that is trans-stimulated by outwardly directed anion flux which is independent of cation. If anion exchange is tightly coupled invivo, the net transfer of sulfate from mother to the growing fetus may be driven by the continuous flux of bicarbonate in the opposite direction.  相似文献   

6.
Summary Brush border membrane vesicles were prepared from mussel gills using differential and sucrose density gradient centrifugation. These vesicles contained both the maximal Na+-dependent alanine transport activity found in the gradient and the maximal activities of -glutamyl transpeptidase and alkaline phosphatase. Electron micrographs showed closed vesicles of approximately 0.1–0.5 m diameter. Transport experiments using these vesicles demonstrated a transient 18-fold overshoot in intravesicular alanine concentration in the presence of an inwardly directed Na+ gradient, but not under Na+ equilibrium conditions. A reduced overshoot (10-fold) was seen with an inwardly directed K+ gradient. Further studies revealed a broad cation selectivity, with preference for Na+, which was characteristic of alanine transport but not glucose transport in these membranes. The apparent amino acid specificity of the uptake pathway(s) was similar to that of intact gills and supported the idea of at least four separate pathways for amino acid transport in mussel gill brush border membranes. The apparent Michaelis constant for alanine uptake was approximately 7m, consistent with values forK t determined with intact tissue.  相似文献   

7.
Summary The properties of two sodium-dependentd-glucose transporters previously identified in renal proximal tubule brush border membrane (BBM) vesicles are studied. The low-affinity system, found in BBM vesicles from the outer cortex (early proximal tubule), is shown to be associated with the high-affinity phlorizin binding site typically found in renal BBM preparations. The high-affinity system, found in BBM vesicles from the outer medulla (late proximal tubule), is almost two orders of magnitude less sensitive to inhibition by phlorizin and is apparently not associated with high-affinity phlorizin binding. The sodium/g;ucose stoichiometry of the outer medullary transporter is found to be 21 by two independent methods. Previous measurements have established that the stoichiometry of the outer cortical system is 11. It is suggested that this arrangement of transporters in series along the proximal tubule enables the kidney to reabsorb glucose from the urine in an energy-efficient fashion. The bulk of the glucose load is reabsorbed early in the proximal tubule at an energetic cost of one Na+ per glucose molecule. Then in the late proximal tubule a larger coupling ratio and hence a larger driving force is employed to reabsorb the last traces of glucose from the urine.  相似文献   

8.
The uptake of selenite, selenate and selenomethionine (SeMet) was performed with brush border membrane vesicles (BBMV) prepared from rats fed selenium-deficient and supplemented diets. At equilibrium (60 min), the uptake of 75Se from [75Se]selenite ranged from 16.5 to 18.9 nmol mg-1 protein. There was a curvilinear relationship in the uptake of selenite over a concentration range of 10–1000 m. About 2 nmol mg-1 protein was obtained with selenomethionine (SeMet) which occurred between 90 and 180 s. In contrast to selenite, there was a linear relationship in the initial uptake of SeMet over a concentration range of 10–1000 m. The uptake of selenate was approximately 50-fold lower than selenite, reaching 350 pmol mg-1 protein. Dietary selenium level had no effect on the rate of 75Se accumulation by BBMV. Dramatic differences are found in the uptake and binding of selenium by BBMV incubated with different selenocompounds.  相似文献   

9.
The insect midgut epithelium is composed of columnar, goblet, and regenerative cells. Columnar epithelial cells are the most abundant and have membrane protrusions that form the brush border membrane (BBM) on their apical side. These increase surface area available for the transport of nutrients, but also provide opportunities for interaction with xenobiotics such as pathogens, toxins and host plant allelochemicals. Recent improvements in proteomic and bioinfbrmatics tools provided an opportunity to determine the proteome of the T. ni BBM in unprecedented detail. This study reports the identification of proteins from BBM vesicles (BBMVs) using single dimension polyacrylamide gel elec? trophoresis coupled with multi-dimensional protein identification technology. More than 3000 proteins were associated with the BBMV of which 697 were predicted to possess either a signal peptide, at least one transmembrane domain or a GPI-anchor signal. Of these, bioinfbrmatics analysis and manual curation predicted that 185 may be associated with the BBMV or epithelial cell plasma membrane. These are discussed with respect to their predicted functions, namely digestion, nutrient uptake, cell signaling, development, cell-cell interactions, and other functions. We believe this to be the most detailed proteomic analysis of the lepidopteran midgut epithelium membrane to date, which will provide information to better understand the biochemical, physiological and pathological processes taking place in the larval midgut.  相似文献   

10.
Ketone body uptake by renal brush border vesicles has been investigated. Ketone bodies enter into the brush border vesicles by a carrier-mediated process. The uptake is dependent on an Na+ gradient ([Na+]outside > [Na+]inside) and is electroneutral. The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. A pH gradient (alkaline inside) also stimulates the ketone body uptake. Acetoacetate and 3-hydroxybutyrate share the same carrier as demonstrated by the accelerated exchange diffusion and mutual inhibitory effects.  相似文献   

11.
Summary The osmotic water permeabilityP f of brush border (BBM) and basolateral (BLM) membrane vesicles from rat small intestine and renal cortex was studied by means of stopped-flow spectrophotometry. Scattered light intensity was used to follow vesicular volume changes upon osmotic perturbation with hypertonic mannitol solutions. A theoretical analysis of the relationship of scattered light intensity and vesicular volume justified a simple exponential approximation of the change in scattered light intensity. The rate constants extracted from fits to an exponential function were proportional to the final medium osmolarity as predicted by theory. For intestinal membranes, computer analysis of optical responses fitted well with a single-exponential treatment. For renal membranes a double-exponential treatment was needed, implying two distinct vesicle populations.P f values for BBM and BLM preparations of small intestine were equal and amount to 60 m/sec. For renal preparations,P f values amount to 600 m/sec for the fast component, BBM as well as BLM, and to 50 (BBM) and 99 (BLM) m/sec for the slow component. The apparent activation energy for water permeation in intestinal membranes was 13.3±0.6 and in renal membranes, 1.0±0.3 kCal/mole, between 25 and 35°C. The mercurial sulfhydryl reagentpCMBS inhibited completely and reversibly the highP f value in renal brush border preparations. These observations suggest that in intestinal membranes water moves through the lipid matrix but that in renal plasma membranes water channels may be involved. From the highP f values of renal membrane vesicles a transcellular water permeability for proximal tubules can be calculated which amounts to 1 cm/sec. This value allows for an entirely transcellular route for water flow during volume reabsorption.  相似文献   

12.
Dietary phosphate (Pi) restriction increases renal Pi reabsorption and induces resistance to the phosphaturic action of parathyroid hormone. Na+-gradient-stimulated Pi transport in membrane vesicles isolated from the renal brush border of experimental animals has been shown to parallel changes in renal Pi reabsorption induced by dietary Pi restriction and in vivo administration of parathyroid hormone. Dietary Pi restriction has been shown to markedly inhibit the phosphaturic response to parathyroid hormone in rats and dogs. Parathyroid hormone has been reported not to decrease the Na+-gradient-stimulated transport of Pi in brush border membrane vesicles isolated from dietary Pi restricted rats unless the rats were administered an acute Pi load prior to killing, however, thyroparathyroidectomy of rats fed a low Pi diet has been reported to increase Na+-gradient-stimulated Pi transport. Using the dietary Pi restricted dog, we demonstrated no significant decrease in renal reabsorption of Pi in response to parathyroid hormone administration. However, significant decreases in Pi transport in brush border membrane vesicles isolated from the kidneys of dietary Pi restricted dogs were observed in response to in vivo parathyroid hormone administration. These data demonstrate that the resistance to the phosphaturic action of parathyroid hormone observed in vivo does not include resistance to the inhibitory effect of parathyroid hormone on Pi transport in brush border membrane vesicles. Thus, the data suggest that parathyroid hormone continues to alter Pi transport characteristics of the brush border membrane in states of Pi depletion despite the resistance to parathyroid hormone seen in vivo.  相似文献   

13.
A procedure for preparing highly purified brush border membranes from rabbit kidney cortex using differential and density gradient centrifugation is described. Brush border membranes prepared by this procedure were substantially free of basal-lateral membranes, mitochondria, endoplasmic reticulum and nuclear material as evidenced by an enrichment factor of less than 0.3 for (Na+ + K+)-ATPase, succinate dehydrogenase, NADPH-cytochrome c reductase and DNA. Alkaline phosphatase was enriched ten fold indicating that the membranes were enriched at least 30 fold with respect to other cellular organelles. The yield of brush border membranes was 20%.Transport of d-glucose by the membranes was identical to that previously reported except that the Arrhenius plot for temperature dependence of transport was curvilinear (EA = 11.3–37.6 kcal/mol) rather than biphasic. Transport of p-aminohippuric acid and uric acid were increased by the presence of NaCl, either gradient or preequilibrated. However, no overshoot was obtained in the presence of a NaCl gradient, and KCl and LiCl also produced equivalent stimulation of transport suggesting a nonspecific ionic strength effect. Uptakes of p-aminohippuric acid and uric acid were not saturable, and were increased markedly by reducing the pH from 7.5 to 5.6. Probenecid (1 mM) reduced p-aminohippuric acid and uric acid (50 μM) uptake by 49% and 21%, respectively. We conclude that the uptake of uric acid and p-aminohippuric acid by renal brush border membranes of the rabbit occurs primarily by a simple solubility-diffusion mechanism.  相似文献   

14.
A density gradient method is used to isolate membrane vesicles from brown adipose tissue. These respond to changes in osmolarity and show the classical overshoot pattern when L-alanine uptake is assayed. Transport is shown to be effected by two components: a linear (Kd=0.498 min−1) and Na+-dependent saturable component (Km=2.3 mM) and a Vmax=19.9 pmol/μg protein·min). This pattern is similar to that shown by cells isolated from brown adipose tissue.  相似文献   

15.
Trypsin treatment of isolated rat renal brush border membrane vesicles which preferentially releases l-leucine aminopeptides (EC 3.4.11.2) decreases their ability to take up a variety of amino acids under Na+-gradient conditions. Such treatment did not alter the osmotic properties of the vesicles nor affect their fragility. A linear correlation could be demonstrated between the l-leucine aminopeptidase activity of the membranes and the initial rate of uptake of l-leucine and l-proline. Velocity of uptake-concentration dependence studies with these substrates indicate that the major effect of trypsinization is to decrease the maximum velocity (Vmax1) of the low-Km high-affinity system with little effect on the Vmax2 of the high-Km low-affinity transport process and no effect on the apparent Michaelis constants of either. Although the data indicate that l-leucine aminopeptidase activity and uptake of l-leucine and l-proline are affected in parallel, they should not be construed to imply a role of the enzyme in the transport process, especially in view of the global decrease in the uptake of various amino acids and sugars.  相似文献   

16.
Initial rates of Na(+)-dependent L-glutamic and D-aspartic acid uptake were determined at various substrate concentrations using a fast sampling, rapid filtration apparatus, and the resulting data were analyzed by nonlinear computer fitting to various transport models. At pH 6.0, L-glutamic acid transport was best accounted for by the presence of both high (Km = 61 microM) and low (Km = 7.0 mM) affinity pathways, whereas D-aspartic acid transport was restricted to a single high affinity route (Km = 80 microM). Excess D-aspartic acid and L-phenylalanine served to isolate L-glutamic acid flux through the remaining low and high affinity systems, respectively. Inhibition studies of other amino acids and analogs allowed us to identify the high affinity pathway as the X-AG system and the low affinity one as the intestinal NBB system. The pH dependences of the high and low affinity pathways of L-glutamic acid transport also allowed us to establish some relationship between the NBB and the more classical ASC system. Finally, these studies also revealed a heterotropic activation of the intestinal X-AG transport system by all neutral amino acids but glycine through an apparent activation of Vmax.  相似文献   

17.
The kinetics of uptake of radioactive label from [U-14C]Gly, L-[4,5-3H]Leu and the dipeptide [14C]Gly-L-[4,5-3H]Leu by the brush border membrane vesicles of porcine small intestine have been studied. The effect of aminopeptidase N inhibitors and leucine-binding protein on accumulation rates has also been tested. Comparison of the kinetic parameters for uptake and hydrolysis of Gly-L-Leu makes it possible to conclude that the dipeptide transfer includes two conjugated steps, viz., hydrolysis catalysed by aminopeptidase N and transport of the resultant free amino acids by a specific carrier.  相似文献   

18.
The temperature dependence of sodium-dependent and sodium-independent d-glucose and phosphate uptake by renal brush border membrane vesicles has been studied under tracer exchange conditions. For sodium-dependent d-glucose and phosphate uptake, discontinuities in the Arrhenius plot were observed. The apparent activation energy for both processes increased at least 4-fold with decreasing temperature. The most striking change in the slope of the Arrhenius plot occurred between 12 and 15°C. The sodium-independent uptake of d-glucose and phosphate showed a linear Arrhenius plot over the temperature range tested (35–5°C). The behavior of the transport processes was compared to the temperature dependence of typical brush border membrane enzymes. Alkaline phosphatase as intrinsic membrane protein showed a nonlinear Arrhenius plot with a transition temperature at 12.4°C. Aminopeptidase M, an extrinsic membrane protein exhibited a linear Arrhenius plot. These data indicate that the sodium-glucose and sodium-phosphate cotransport systems are intrinsic brush border membrane proteins, and that a change in membrane organization alters the activity of a variety of intrinsic membrane proteins simultaneously.  相似文献   

19.
Selenate and selenite uptakes by isolated intestinal brush border membrane vesicles (BBMV) from pig, sheep, and rat were investigated. Selenate uptake into jejunal and ileal, but not duodenal, BBMV from pig was stimulated by an inwardly directed transmembrane Na+ gradient (Na out + >Na in + ). Selenate transport into rat ileal and sheep jejunal BBMV was also enhanced in the presence of a Na+ gradient. Unlike selenate uptake, selenite uptake was not Na+ dependent, neither in pig small intestine nor in sheep jejunum and rat ileum. Uptake of selenate represented real uptake into the vesicular lumen, whereas selenite uptake was a result of an extensive binding of75Se to the membranes. Thiosulfate at a 250-fold concentration of selenate completely inhibited Na+-dependent selenate uptake into pig jejunal BBMV. Furthermore, Na+-dependent sulfate uptake was totally inhibited in the presence of a 250-fold selenate concentration. The results clearly show that selenate transport across the BBM of pig jejunum and ileum, sheep jejunum, and rat ileum is partially energized by a transmembrane Na+ gradient. Moreover, it is concluded from the results that there exists a common transport mechanism for sulfate and selenate in the BBM. The extensive binding of75Se from75Se-labeled selenite to the membranes could be from a spontaneous reaction of selenite with membrane-associated SH groups.  相似文献   

20.
In order to study the effect of the antibiotic neomycin on the intestinal epithelium, d-glucose was used as a probe molecule and its transport into rabbit brush border membrane vesicles was measured by a rapid filtration method. Treatment of the epithelium with neomycin sulfate prior to the preparation of the brush border membrane enhanced the d-glucose uptake, whereas neutral N-acetylated neomycin did not. This action of neomycin was related to its polycationic character and not to its bactericidal action. No significant difference could be demonstrated between the protein content or disaccharidase-specific activities of the brush border fractions from treated or non-treated intestines. Electrophoretic protein patterns of SDS-solubilized membrane were not significantly different after neomycin treatment. To gain more information on the mechanism involved in the stimulation of d-glucose transport, experiments were conducted on phosphatidyl glycerol artificial membranes and the results compared with those obtained with brush border membrane. At a concentration of 10?7 M, neomycin decreased the nonactin-induced K+ conductance by a factor of approx. 100. The membrane conductance was linearly dependent on the neomycin concentration and the conductance in 10?2 M KCl was 10 times that in 10?3 M KCl. The valence of neomycin was estimated, from the slope of these curves, to be between 6 and 4. In contrast, acetylated neomycin had no effect on the nonactin-induced K+ membrane conductance. Therefore, the effect of neomycin on artificial membrane is related to its 4 to 6 positive charges. It is proposed that the stimulation of sugar transport in brush border membrane is related to screening of the membrane negative charges by the positively-charged neomycin. Accumulation of anions at the membrane surface then occurs and their diffusion into the intravesicular space would increase the transmembrane potential which, in turn, stimulates the entry of d-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号