首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In brush border membrane vesicles from the midgut ofPhilosamia cynthia larvae (Lepidoptera) thel- andd-alanine uptake is dependent on a potassium gradient and on transmembrane electrical potential difference. Each isomer inhibits the uptake of the other form: inhibition ofl-alanine uptake byd-alanine is competitive, whereas inhibition ofd-alanine uptake byl-alanine is noncompetitive. Transstimulation experiments as well as the different pattern of specificity to cations suggest the existence of two transport systems. Kinetic parameters for the two transporters have been calculated both when Kout>Kin and Kout=Kin.d-alanine is actively transported also by the whole midgut, but it is not metabolized by the intestinal tissue.  相似文献   

2.
《Molecular membrane biology》2013,30(3-4):203-219
Brush border membrane vesicles were isolated from rat kidney cortex by differential centrifugation in the presence of 10 mM calcium. Their properties were compared to brush border vesicles isolated by free-flow electrophoresis. By the calcium precipitation method membrane vesicles were obtained in a shorter time with a similar enrichment of brush border marker enzymes (11- to 12-fold for alkaline phosphatase and maltase), with a similarly reduced activity of the marker enzyme for basal-lateral plasma membranes and an almost identical protein composition as revealed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The transport properties of the two membrane preparations for D-glucose, L-phenylalanine, and phosphate are essentially the same; there is some indication for a lower sodium permeability of the vesicles prepared by the calcium precipitation method. The latter vesicles were also shown to exhibit sodium gradient stimulated uptake of L-glutamate.  相似文献   

3.
    
Summary l-proline uptake via the intestinal brush-borderIMINO carrier was tested for inhibition by 41 compounds which included sugars, N-methylated, -,-, - and -amino and imino acids, and heterocyclic analogs of pyrrolidine, piperidine and pyridine. Based on competitive inhibitor constants (apparentK/'s) we find that theIMINO carrier binding site interacts with molecules which possess a well-defined set of structural prerequisites. The ideal inhibitor must 1) be a heterocyclic nitrogen ring, 2) have a hydrophobic region, 3) be thel-stereoisomer of 4) an electronegative carbonyl group which is 5) separated by a one-carbon atom spacer from 6) an electropositive tetrahedral imino nitrogen with two H atoms. Finally, 7) the inhibitor conformation determined by dynamic ring puckering must position all these features within a critical domain. The two best inhibitors arel-pipecolate (apparentK/0.2mm) andl-proline (apparentK/0.3mm).  相似文献   

4.
Summary Brush border membrane vesicles were prepared from mussel gills using differential and sucrose density gradient centrifugation. These vesicles contained both the maximal Na+-dependent alanine transport activity found in the gradient and the maximal activities of -glutamyl transpeptidase and alkaline phosphatase. Electron micrographs showed closed vesicles of approximately 0.1–0.5 m diameter. Transport experiments using these vesicles demonstrated a transient 18-fold overshoot in intravesicular alanine concentration in the presence of an inwardly directed Na+ gradient, but not under Na+ equilibrium conditions. A reduced overshoot (10-fold) was seen with an inwardly directed K+ gradient. Further studies revealed a broad cation selectivity, with preference for Na+, which was characteristic of alanine transport but not glucose transport in these membranes. The apparent amino acid specificity of the uptake pathway(s) was similar to that of intact gills and supported the idea of at least four separate pathways for amino acid transport in mussel gill brush border membranes. The apparent Michaelis constant for alanine uptake was approximately 7m, consistent with values forK t determined with intact tissue.  相似文献   

5.
The uptake of selenite, selenate and selenomethionine (SeMet) was performed with brush border membrane vesicles (BBMV) prepared from rats fed selenium-deficient and supplemented diets. At equilibrium (60 min), the uptake of 75Se from [75Se]selenite ranged from 16.5 to 18.9 nmol mg-1 protein. There was a curvilinear relationship in the uptake of selenite over a concentration range of 10–1000 m. About 2 nmol mg-1 protein was obtained with selenomethionine (SeMet) which occurred between 90 and 180 s. In contrast to selenite, there was a linear relationship in the initial uptake of SeMet over a concentration range of 10–1000 m. The uptake of selenate was approximately 50-fold lower than selenite, reaching 350 pmol mg-1 protein. Dietary selenium level had no effect on the rate of 75Se accumulation by BBMV. Dramatic differences are found in the uptake and binding of selenium by BBMV incubated with different selenocompounds.  相似文献   

6.
Isolated brush-border membrane vesicles prepared from human placenta are known to transport amino acids via a Na+-dependent mechanism akin to that found in gut and kidney vesicle preparations. We studied sulfate transport in placental vesicles and failed to identify any Na+-dependent uptake mechanism. Rather, uptake is a non-electrogenic process that is trans-stimulated by outwardly directed anion flux which is independent of cation. If anion exchange is tightly coupled invivo, the net transfer of sulfate from mother to the growing fetus may be driven by the continuous flux of bicarbonate in the opposite direction.  相似文献   

7.
Summary Optimum conditions have been established for the measurement of amino acid transport by human lymphoblastoid cell lines using a membrane-filtration technique. The parameters we found to be important for the reproducibility of the method are: the types and combination of filters, the strength of the vacuum applied to the filters and the density of the cultures at the time of harvesting and during uptake and filtration. We found that bovine serum albumin added to phosphate buffered saline (PBS) glucose in which the cells are washed, resuspended and assayed is essential for the maintenance of viability, the prevention of clumping and the retention of the accumulated amino acid. Using this procedure we have characterized two transport systems for the neutral amino acids; an A and an L system, which are similar but not identical to the A and L systems characterized in rodent cell lines. These A and L systems have characteristically lower Km's and Vm's for alanine and phenylalanine, when compared to rodent cell lines. In addition, we find α-AIB to be a poor competitor of alanine and phenylalanine uptake. This work was supported by Grant No. CA18644, awarded by the National Cancer Institute, Department of Health, Education and Welfare, and from a grant from the National Science Foundation under Grant No. PCM 76-24328.  相似文献   

8.
Summary We have confirmed previous demonstrations of sodium gradient-stimulated transport ofl-alanine, phenylalanine, proline, and -alanine, and in addition demonstrated transport of N-methylamino-isobutyric acid (MeAIB) and lysine in isolated rabbit kidney brush border vesicles. In order to probe the multiplicity of transport pathways available to each of these14C-amino acids, we measured the ability of test amino acids to inhibit tracer uptake. To obtain a rough estimate of nonspecific effects, e.g., dissipation of the transmembrane sodium electrochemical potential gradient, we measured the ability ofd-glucose to inhibit tracer uptake.l-alanine and phenylalanine were completely mutually inhibitory. Roughly 75% of the14C-l-alanine uptake could be inhibited by proline and -alanine, while lysine and MeAIB were no more effective thand-glucose. Roughly 50% of the14C-phenylalanine uptake could be inhibited by proline and -alanine; lysine was as effective as proline and -alanine, and the effects of pairs of these amino acids at 50mm each were not cumulative. MeAIB was no more effective thand-glucose. We conclude that three pathways mediate the uptake of neutral,l, -amino acids. One system is inaccessible to lysine, proline, and -alanine. The second system carries a major fraction of thel-alanine flux; it is sensitive to proline and -alanine, but not to lysine. The third system carries half the14C-phenylalanine flux, and it is sensitive to proline, lysine, and -alanine. Since the neutral,l, -amino acid fluxes are insensitive to MeAIB, we conclude that they are not mediated by the classicalA system, and since all of thel-alanine flux is inhibited by phenylalanine, we conclude that it is not mediated by the classicalASC system.l-alanine and phenylalanine completely inhibit uptake of lysine. MeAIB is no more effective thand-glucose in inhibiting lysine uptake, while proline and -alanine appear to inhibit a component of the lysine flux. We conclude that the14C-lysine fluxes are mediated by two systems, one, shared with phenylalanine, which is inhibited by proline, -alanine, andl-alanine, and one which is inhibited byl-alanine and phenylalanine but inaccessible to proline, -alanine, and MeAIB. Fluxes of14C-proline and14C-MeAIB are completely inhibited byl-alanine, phenylalanine, proline, and MeAIB, but they are insensitive to lysine. Proline and MeAIB, as well as alanine and phenylalanine, but not lysine, inhibit14C--alanine uptake. However, -alanine inhibits only 38% of the14C-proline uptake and 57% of the MeAIB uptake. We conclude that two systems mediate uptake of proline and MeAIB, and that one of these systems also transports -alanine.  相似文献   

9.
    
Summary The properties of two sodium-dependentd-glucose transporters previously identified in renal proximal tubule brush border membrane (BBM) vesicles are studied. The low-affinity system, found in BBM vesicles from the outer cortex (early proximal tubule), is shown to be associated with the high-affinity phlorizin binding site typically found in renal BBM preparations. The high-affinity system, found in BBM vesicles from the outer medulla (late proximal tubule), is almost two orders of magnitude less sensitive to inhibition by phlorizin and is apparently not associated with high-affinity phlorizin binding. The sodium/g;ucose stoichiometry of the outer medullary transporter is found to be 21 by two independent methods. Previous measurements have established that the stoichiometry of the outer cortical system is 11. It is suggested that this arrangement of transporters in series along the proximal tubule enables the kidney to reabsorb glucose from the urine in an energy-efficient fashion. The bulk of the glucose load is reabsorbed early in the proximal tubule at an energetic cost of one Na+ per glucose molecule. Then in the late proximal tubule a larger coupling ratio and hence a larger driving force is employed to reabsorb the last traces of glucose from the urine.  相似文献   

10.
Summary The ion permeability of rabbit jejunal brush border membrane vesicles was studied by measuring unidirectional fluxes with radioactive tracers and bi-ionic diffusion potentials with the potential-sensitive fluorescent dye, diS–C3-(5). Tracer measurements provide estimates of the absolute magnitudes of permeability coefficients, while fluorescence measurements provide estimates of relative and absolute ion permeabilities. The magnitudes of the permeability coefficients for Na+, K+, Rb+, and Br were approximately 5 nanoliters/(mg protein × sec) or 10–5 cm/sec as determined by radioactive tracer measurements. The apparent selectivity sequence, relative to Na+, as determined by bi-ionic potential measurements was: F, isetheionate, gluconate, choline (<0.1)+(1.0)–(1.5)=NO3(1.5)–(2.3)+(2.4)+(2.5)+(2.6)+(3.9) 4+(12)–(40). The origin of this selectivity sequence and its relationship to the ion permeability of the brush border membrane in the intact epithelium are discussed.  相似文献   

11.
A density gradient method is used to isolate membrane vesicles from brown adipose tissue. These respond to changes in osmolarity and show the classical overshoot pattern when L-alanine uptake is assayed. Transport is shown to be effected by two components: a linear (Kd=0.498 min−1) and Na+-dependent saturable component (Km=2.3 mM) and a Vmax=19.9 pmol/μg protein·min). This pattern is similar to that shown by cells isolated from brown adipose tissue.  相似文献   

12.
Instructions for authors   总被引:1,自引:0,他引:1  
Sex differences in the kinetic parameters of p-aminohippuric acid (PAH) transport in brush border (BBMV) and basolateral (BLMV) membrane vesicles from kidney cortex have been observed. Membrane fluidity of BBMV was higher in females as compared with male rats as indicated by anisotropy values (0.1897 ± 0.0010 vs. 0.2003 ± 0.0014, p < 0.05, for females and males respectively). Membrane fluidity of BLMV were similar in both sexes. Western blot studies revealed that OAT1 protein in female BLMV was present at only 40% of level found in BLMV from male rats. The lower expression of OAT1 in BLMV in association with the higher BBMV fluidity (which may affect the affinity of PAH transporter in this membrane domain) observed in females may be responsible, at least in part, for the gender difference described in renal PAH secretion.  相似文献   

13.
Uptake of [14C] alanine, arginine, glutamic acid and phenylalanine by Trypanosoma equiperdum occurred by both a mediated mechanism and diffusion. Twenty amino acids were studied as inhibitors of absorption of the above amino acids. Results suggested that at least 4 distinct transport loci are involved in amino acid transport. These 4 loci have overlapping affinities for amino acids and seem to be involved, respectively, in the absorption of (a) arginine and phenylalanine; (b) arginine; (c) alanine, phenylalanine, and glutamic acid; (d) glutamic acid. The data also showed that multiple sites for substrate binding occur on each of 2 transport systems.  相似文献   

14.
In the present study, we documented the promising role of thyroid hormones status in animals in modulation of Na+–Pi transport activity in intestinal brush border membrane vesicles (BBMV) which was accompanied with alterations in BBM lipid composition and fluidity. Augmentation of net Pi balance in hyperthyroid (Hyper-T) rats was fraternized with accretion of Pi transport across BBMV isolated from intestine of Hyper-T rats as compared to hypothyroid (Hypo-T) and euthyroid (Eu-T) rats while Na+–Pi transport across BBMV was decreased in Hypo-T rats relative to Eu-T rats. Increment in Na+–Pi transport in intestinal BBMV isolated from Hyper-T rats was manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport system. Furthermore, BBMV lipid composition profile in intestinal BBM from Hyper-T was altered to that of Hypo-T rats and Eu-T rats. The molar ratio of cholesterol/phospholipids was higher in intestinal BBM from Hypo-T rats. Fluorescence anistropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the intestinal BBM of Hyper-T rats and decreased in Hypo-T rats as compared to Eu-T rats which corroborated with the alteration in membrane fluidity in response to thyroid hormone status of animals. Therefore, thyroid hormone mediated change in membrane fluidity might play an important role in modulating Na+–Pi transport activity of intestinal BBM. (Mol Cell Biochem 278: 195–202, 2005)  相似文献   

15.
Summary The osmotic water permeabilityP f of brush border (BBM) and basolateral (BLM) membrane vesicles from rat small intestine and renal cortex was studied by means of stopped-flow spectrophotometry. Scattered light intensity was used to follow vesicular volume changes upon osmotic perturbation with hypertonic mannitol solutions. A theoretical analysis of the relationship of scattered light intensity and vesicular volume justified a simple exponential approximation of the change in scattered light intensity. The rate constants extracted from fits to an exponential function were proportional to the final medium osmolarity as predicted by theory. For intestinal membranes, computer analysis of optical responses fitted well with a single-exponential treatment. For renal membranes a double-exponential treatment was needed, implying two distinct vesicle populations.P f values for BBM and BLM preparations of small intestine were equal and amount to 60 m/sec. For renal preparations,P f values amount to 600 m/sec for the fast component, BBM as well as BLM, and to 50 (BBM) and 99 (BLM) m/sec for the slow component. The apparent activation energy for water permeation in intestinal membranes was 13.3±0.6 and in renal membranes, 1.0±0.3 kCal/mole, between 25 and 35°C. The mercurial sulfhydryl reagentpCMBS inhibited completely and reversibly the highP f value in renal brush border preparations. These observations suggest that in intestinal membranes water moves through the lipid matrix but that in renal plasma membranes water channels may be involved. From the highP f values of renal membrane vesicles a transcellular water permeability for proximal tubules can be calculated which amounts to 1 cm/sec. This value allows for an entirely transcellular route for water flow during volume reabsorption.  相似文献   

16.
    
Brush border membrane trehalase was purified from monkey small intestine by a procedure which includes solubilisation by Triton X-100, ammonium sulphate fractionation, and chromatography on DE-52 and hydroxyapatite. The purified enzyme had a specific activity of 11 units/mg protein and was purified 140-fold. The enzyme showed a single protein band on Polyacrylamide gel electrophoresis. It had aK m value of 17.4 mM for trehalose and a Vmax of 1.33 units. Sucrose and Tris acted as competitive inhibitors of the enzyme.  相似文献   

17.
    
The insect midgut epithelium is composed of columnar, goblet, and regenerative cells. Columnar epithelial cells are the most abundant and have membrane protrusions that form the brush border membrane (BBM) on their apical side. These increase surface area available for the transport of nutrients, but also provide opportunities for interaction with xenobiotics such as pathogens, toxins and host plant allelochemicals. Recent improvements in proteomic and bioinfbrmatics tools provided an opportunity to determine the proteome of the T. ni BBM in unprecedented detail. This study reports the identification of proteins from BBM vesicles (BBMVs) using single dimension polyacrylamide gel elec? trophoresis coupled with multi-dimensional protein identification technology. More than 3000 proteins were associated with the BBMV of which 697 were predicted to possess either a signal peptide, at least one transmembrane domain or a GPI-anchor signal. Of these, bioinfbrmatics analysis and manual curation predicted that 185 may be associated with the BBMV or epithelial cell plasma membrane. These are discussed with respect to their predicted functions, namely digestion, nutrient uptake, cell signaling, development, cell-cell interactions, and other functions. We believe this to be the most detailed proteomic analysis of the lepidopteran midgut epithelium membrane to date, which will provide information to better understand the biochemical, physiological and pathological processes taking place in the larval midgut.  相似文献   

18.
Summary In previous studies from this laboratory [14], a mediated transport system for long chain fatty acids was observed in rat renal basolateral membrane vesicles. Transport was measured in the absence of albumin and indicated the presence of a Na+ independent anion exchange mechanism. The present experiments were done to characterize renal transport of fatty acids derived from fatty acid-albumin complexes. 3H-palmitate uptake by brush border (BBMV) and basolateral membrane vesicles (BLMV) isolated from rat renal cortex was determined using a rapid filtration technique. All incubation media contained 100 µM 3H-palmitate complexed to 100 µM bovine serum albumin. Up to 65% of initially bound fatty acid-albumin complexes were displaceable by washing with solution containing 0.1% albumin. Total palmitate uptake was measured as the remaining non-displaceable radioactivity. In BBMV in low ionic strength (300 mM mannitol) or ionic buffers (100 mM mannitol + 100 mM NaCl or KCl), total palmitate uptake at 15 sec did not differ from equilibrium (60 min) values of 10–11 nmoles/mg protein. Uptake was primarily due to binding. A similar pattern was seen with BLMV in 300 mM mannitol buffer: In BLMV in 100 mM NaCl or KCl buffers, equilibrium uptake was 10-fold lower than at 15 sec. This suggests binding followed by cation-dependent translocation. If a putative FABPPM is involved in transport only, its presence should be confined to BLMV.  相似文献   

19.
We used rapid filtration assays to determine the ion selectivity of ion gradientdriven phenylalanine uptake by brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm (Manduca sexta). Phenylalanine uptake by these vesicles is stimulated by both potassium and sodium. Phenylalanine uptake by larval M. sexta midgut brush border membrane vesicles is voltage sensitive and shows little selectivity for potassium over sodium. However, phenylalanine uptake by these vesicles is stimulated by neither rubidium nor lithium.  相似文献   

20.
A procedure for preparing highly purified brush border membranes from rabbit kidney cortex using differential and density gradient centrifugation is described. Brush border membranes prepared by this procedure were substantially free of basal-lateral membranes, mitochondria, endoplasmic reticulum and nuclear material as evidenced by an enrichment factor of less than 0.3 for (Na+ + K+)-ATPase, succinate dehydrogenase, NADPH-cytochrome c reductase and DNA. Alkaline phosphatase was enriched ten fold indicating that the membranes were enriched at least 30 fold with respect to other cellular organelles. The yield of brush border membranes was 20%.Transport of d-glucose by the membranes was identical to that previously reported except that the Arrhenius plot for temperature dependence of transport was curvilinear (EA = 11.3–37.6 kcal/mol) rather than biphasic. Transport of p-aminohippuric acid and uric acid were increased by the presence of NaCl, either gradient or preequilibrated. However, no overshoot was obtained in the presence of a NaCl gradient, and KCl and LiCl also produced equivalent stimulation of transport suggesting a nonspecific ionic strength effect. Uptakes of p-aminohippuric acid and uric acid were not saturable, and were increased markedly by reducing the pH from 7.5 to 5.6. Probenecid (1 mM) reduced p-aminohippuric acid and uric acid (50 μM) uptake by 49% and 21%, respectively. We conclude that the uptake of uric acid and p-aminohippuric acid by renal brush border membranes of the rabbit occurs primarily by a simple solubility-diffusion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号