首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Telomere homeostasis, a process that is essential for continued cell proliferation and genomic stability, is regulated by endogenous telomerase and a collection of associated proteins. In this paper, a protein called KIP (previously reported as a protein that binds specifically to DNA-dependent protein kinase), has been identified as a telomerase-regulating activity based on the following pieces of evidence. First, complexes between KIP and the catalytic subunit of telomerase (hTERT) were identified using the yeast two-hybrid technique. Second, antibodies specific to KIP immunoprecipitate human telomerase in cell-free extracts. Third, immunolocalization experiments demonstrate that KIP is a nuclear protein that co-localizes with hTERT in cells. Fourth, KIP binds to hTERT both in vitro and in vivo in the absence of human telomerase RNA or telomeric DNA, thus defining the catalytic subunit of telomerase as the site of physical interaction. Fifth, co-immunoprecipitation experiments suggest that KIP-hTERT complexes form readily in cells and that overexpression of KIP in telomerase-positive cells increases endogenous telomerase activity. Finally, continued overexpression of KIP (60 population doublings) resulted in cells with elongated telomeres; thus, KIP directly or indirectly stimulates telomerase activity through hTERT and contributes to telomere lengthening. The collective data in this paper suggest that KIP plays a positive role in telomere length maintenance and/or regulation and may represent a novel target for anti-cancer drug development.  相似文献   

4.
The calcium binding S100A8/A9 complex (MRP8/14; calgranulin) is considered as an important proinflammatory mediator in acute and chronic inflammation and has recently gained attention as a molecular marker up-regulated in various human cancers. Here, we report that S100A8/A9 is expressed in breast cancer cell lines and is up-regulated by interleukin-1beta and tumor necrosis factor-alpha in SKBR3 and MCF-7 cells. We identified the phospholipid-binding protein annexin A6 as a potential S100A8/A9 binding protein by affinity chromatography. This finding was verified by Southwestern overlay experiments and by coimmunoprecipitation with the S100A8/A9-specific monoclonal antibody 27E10. Immunocytochemical experiments demonstrated that S100A8/A9 and annexin A6 colocalize in SKBR3 breast cancer cells predominantly in membranous structures. Upon calcium influx both S100A8/A9 and annexin A6 are exposed on the cell surface of SKBR3 cells. Subcellular fractionation studies suggested that after A23187 stimulation membrane association of S100A8/A9 is not enhanced. However, both S100A8/A9 and annexin A6 are exposed on the cell surface of SKBR3 cells upon calcium influx. Experiments with artificial liposomes indicated that S100A8/A9 is able to associate with membranes independently of both annexin A6 and independently of calcium. Finally, cell surface expression of S100A8/A9 could not be observed in A23187-treated A431 and HaCaT cells. Both cell lines are known to be devoid of annexin A6. Repression of annexin A6 expression by small interfering RNA in SKBR3 cells abolishes the cell surface exposition of S100A8/A9 upon calcium influx, suggesting that annexin A6 contributes to the calcium-dependent cell surface exposition of the membrane associated-S100A8/A9 complex.  相似文献   

5.
6.
The two calcium- and zinc-binding proteins, S100A9 and S100 A8, abundant in myeloid cells are considered to play important roles in both calcium signalling and zinc homeostasis. Polymorphonuclear neutrophils from S100A9 ko mice are also devoid of S100A8. Therefore, S100A9-deficient neutrophils were used as a model to study the role of the two S100 proteins in the neutrophils's calcium and zinc metabolism. Analysis of the intracellular zinc level upon pyrithione and (+/-)-(E)-methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexeneamide (NOR-1) treatment revealed no differences between S100A9-deficient and wildtype neutrophils. Similar, the calcium signals were not distinguishable from S100A9-deficient and wildtype neutrophils upon stimulation with platelet activating factor (PAF), thapsigargin or macrophage inflammatory protein 1 alpha (MIP-1 alpha), indicating despite their massive expression S100A8/A9 do neither serve as calcium nor as zinc buffering proteins in granulocytes. In contrast, stimulation with adenosine-5'-triphosphate (ATP) induces a significant stronger increase of the intracellular free calcium level in S100A9-deficient cells compared to wildtype cells. Moreover, the ATP-induced calcium signal was still different when the cells were incubated in calcium free buffer suggesting that pirinergic receptors of the P(2Y) class could be involved in this signalling pathway.  相似文献   

7.
S100A8 and S100A9 in human arterial wall. Implications for atherogenesis   总被引:1,自引:0,他引:1  
Atherogenesis is a complex process involving inflammation. S100A8 and S100A9, the Ca2+-binding neutrophil cytosolic proteins, are associated with innate immunity and regulate processes leading to leukocyte adhesion and transmigration. In neutrophils and monocytes the S100A8-S100A9 complex regulates phosphorylation, NADPH-oxidase activity, and fatty acid transport. The proteins have anti-microbial properties, and S100A8 may play a role in oxidant defense in inflammation. Murine S100A8 is regulated by inflammatory mediators and recruits macrophages with a proatherogenic phenotype. S100A9 but not S100A8 was found in macrophages in ApoE-/- murine atherosclerotic lesions, whereas both proteins are expressed in human giant cell arteritis. Here we demonstrate S100A8 and S100A9 protein and mRNA in macrophages, foam cells, and neovessels in human atheroma. Monomeric and complexed forms were detected in plaque extracts. S100A9 was strongly expressed in calcifying areas and the surrounding extracellular matrix. Vascular matrix vesicles contain high levels of Ca2+-binding proteins and phospholipids that regulate calcification. Matrix vesicles characterized by electron microscopy, x-ray microanalysis, nucleoside triphosphate pyrophosphohydrolase assay and cholesterol/phospholipid analysis contained predominantly S100A9. We propose that S100A9 associated with lipid structures in matrix vesicles may influence phospholipid-Ca2+ binding properties to promote dystrophic calcification. S100A8 and S100A9 were more sensitive to hypochlorite oxidation than albumin or low density lipoprotein and immunoaffinity confirmed S100A8-S100A9 complexes; some were resistant to reduction, suggesting that hypochlorite may contribute to protein cross-linking. S100A8 and S100A9 in atherosclerotic plaque and calcifying matrix vesicles may significantly influence redox- and Ca2+-dependent processes during atherogenesis and its chronic complications, particularly dystrophic calcification.  相似文献   

8.
hnRNP A1 associates with telomere ends and stimulates telomerase activity   总被引:6,自引:1,他引:5  
Telomerase is a ribonucleoprotein enzyme complex that reverse-transcribes an integral RNA template to add short DNA repeats to the 3'-ends of telomeres. G-quadruplex structure in a DNA substrate can block its extension by telomerase. We have found that hnRNP A1--which was previously implicated in telomere length regulation--binds to both single-stranded and structured human telomeric repeats, and in the latter case, it disrupts their higher-order structure. Using an in vitro telomerase assay, we observed that depletion of hnRNP A/B proteins from 293 human embryonic kidney cell extracts dramatically reduced telomerase activity, which was fully recovered upon addition of purified recombinant hnRNP A1. This finding suggests that hnRNP A1 functions as an auxiliary, if not essential, factor of telomerase holoenzyme. We further show, using chromatin immunoprecipitation, that hnRNP A1 associates with human telomeres in vivo. We propose that hnRNP A1 stimulates telomere elongation through unwinding of a G-quadruplex or G-G hairpin structure formed at each translocation step.  相似文献   

9.
Recently, we identified the two myeloid related protein-8 (MRP8) (S100A8) and MRP14 (S100A9) as fatty acid-binding proteins (Klempt, M., Melkonyan, H., Nacken, W., Wiesmann, D., Holtkemper, U., and Sorg, C. (1997) FEBS Lett. 408, 81-84). Here we present data that the S100A8/A9 protein complex represents the exclusive arachidonic acid-binding proteins in human neutrophils. Binding and competition studies revealed evidence that (i) fatty acid binding was dependent on the calcium concentration; (ii) fatty acid binding was specific for the protein complex formed by S100A8 and S100A9, whereas the individual components were unable to bind fatty acids; (iii) exclusively polyunsaturated fatty acids were bound by S100A8/A9, whereas saturated (palmitic acid, stearic acid) and monounsaturated fatty acids (oleic acid) as well as arachidonic acid-derived eicosanoids (15-hydroxyeicosatetraenoic acid, prostaglandin E(2), thromboxane B(2), leukotriene B(4)) were poor competitors. Stimulation of neutrophil-like HL-60 cells with phorbol 12-myristate 13-acetate led to the secretion of S100A8/A9 protein complex, which carried the released arachidonic acid. When elevation of intracellular calcium level was induced by A23187, release of arachidonic acid occurred without secretion of S100A8/A9. In view of the unusual abundance in neutrophilic cytosol (approximately 40% of cytosolic protein) our findings assign an important role for S100A8/A9 as mediator between calcium signaling and arachidonic acid effects. Further investigations have to explore the exact function of the S100A8/A9-arachidonic acid complex both inside and outside of neutrophils.  相似文献   

10.
11.
Calcium-mediated telomerase activity in ovarian epithelial cells   总被引:4,自引:0,他引:4  
Though the potential of telomerase as an anti-cancer target is evident, information about regulation of telomerase remains fragmentary. In the present study, we examined the role of calcium, an essential cellular signaling molecule, in the regulation of telomerase. We found that calcium induced de novo telomerase activity in telomerase-negative ovarian surface epithelial (OSE) cell lines but not in primary cultures of OSE. In addition, we showed that calcium elevated endogenous telomerase levels in a telomerase-positive ovarian cancer cell line. The use of calcium channel blockers or calcium chelators inhibited this calcium-mediated induction of telomerase activity. Furthermore, cadmium and chromium appeared to cause a moderate induction of telomerase activity while several other metal salts did not. Our data provide the first example of calcium-induced telomerase activity in human cell lines, provide a novel avenue for possible intervention of telomerase, and permit development of therapeutic agents for adjunctive chemotherapy.  相似文献   

12.
S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-α, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.  相似文献   

13.
S100A8 and S100A9 are two proinflammatory molecules belonging to the S100 family of calcium-binding proteins. Common to all S100 proteins S100A8 and S100A9 form non-covalently associated complexes which have been shown to exhibit different functional properties. Besides dimerization, recent research is focused on the importance of higher oligomeric structures of S100 proteins induced by bivalent cations. While S100A8/S100A9-heterodimers are formed in the absence of calcium, tetramerization is strictly calcium-dependent. Heterodimer formation is not a simple process and our biophysical analyses (FRET, ESI-MS) demonstrate that simply mixing both subunits is not sufficient to induce complex formation. Steps of denaturation/renaturation are necessary for the recombinant complex to show identical biophysical properties as S100A8/S100A9 obtained from granulocytes. In addition to calcium both proteins are able to bind zinc with high affinity. Here we demonstrate for the first time by different biophysical methods (MALDI-MS, ESI-MS, fluorescence spectroscopy) that zinc-binding, like calcium, induces (S100A8/S100A9)(2)-tetramers. Using mass spectrometric investigations we demonstrate that zinc triggers the formation of (S100A8/S100A9)(2)-tetramers by zinc-specific binding sites rather than by interactions with calcium-specific EF-hands. The zinc-induced tetramer is structurally very similar to the calcium-induced tetramer. Thus, like calcium, zinc acts as a regulatory factor in S100A8/S100A9-dependent signaling pathways.  相似文献   

14.
15.
Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.  相似文献   

16.
17.
18.
Fulnecková J  Fajkus J 《FEBS letters》2000,467(2-3):305-310
The activity of telomerase in plant cells is precisely regulated in response to changes in cell division rate. To explore this regulatory mechanism, the effect on telomerase activity of protein extracts from nuclei of telomerase-negative tissues was examined. An inhibition of telomerase activity was found which was species-non-specific. This inhibition was due to proteins which form salt-stable, sequence-specific complexes with the G-rich telomeric strand and reduce its accessibility, as shown by gel retardation and by terminal transferase (TdT) extension of G-rich telomeric and non-telomeric (substrate) primers. A 40 kDa polypeptide was detected by SDS-PAGE after cross-linking the complex formed by extracts from tobacco leaf nuclei. Such proteins may be involved in regulation of telomerase activity in plants.  相似文献   

19.
Since it has been widely demonstrated that platinum-based drugs, like cisplatin, carboplatin and oxaliplatin, bind preferentially to guanine in N7 position and that telomerase assemblage includes a RNA portion rich in guanine, we previously designed and synthesized a series of new complexes with a cytotoxic [Pt(II)Cl2] moiety, with the aim of selecting carrier ligands able to inhibit telomerase enzyme. Among these compounds, [cis-dichloropyridine-5-isoquinolinesulfonic acid Pt(II)], named Ptquin8, showed the most significant inhibition of telomerase in a cell-free biochemical assay. In this paper, we report the biological effects of Ptquin8 on in vitro tumor model (MCF-7). This complex is able to reduce telomerase activity from 12 to 46%, in a concentration range between 10–9 and 10–5 M after 24 h continuous treatment. Moreover, Ptquin8 shows significant cytotoxicity after 10 days of continuous treatment only at concentrations higher than 10–5 M. The determination of residual telomere length confirmed the inhibition of telomerase action. This induced a progressive reduction of the cell proliferative capacity, and the appearance of an elevated number of apoptotic cells after 18 days. RT-PCR analysis of telomerase RNA components excluded any interaction of the compound at genomic level. The biochemical effects of Ptquin8 were also evaluated on non-neoplastic NIH3T3 cells, that are able to down-regulate telomerase activity as a consequence of the confluence contact inhibition. In this cell model, the reactivation of telomerase due to re-seeding at lower density was significantly inhibited by Ptquin8 in a dose-dependent manner. These results highlight a possible role of Ptquin8 as a selective anti-telomerase tool for cancer treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号