首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.  相似文献   

2.
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA.  相似文献   

3.
Henneman's size principle relates the input and output properties of motoneurons and their muscle fibers to size and is the basis for size-ordered activation or recruitment of motor units during movement. After nerve injury and surgical repair, the relationship between motoneuron size and the number and size of the muscle fibers that the motoneuron reinnervates is initially lost but returns with time, irrespective of whether the muscles are self- or cross-reinnervated by the regenerated axons. Although the return of the size relationships was initially attributed to the recovery of the cross-sectional area of the reinnervated muscle fibers and their force per fiber, direct enumeration of the innervation ratio and the number of muscle fibers per motoneuron demonstrated that a size-dependent branching of axons accounts for the size relationships in normal muscle, as suggested by Henneman and his colleagues. This same size-dependent branching accounts for the rematching of motoneuron size and muscle unit size in reinnervated muscles. Experiments were carried out to determine whether the daily amount of neuromuscular activation of motor units accounts for the size-dependent organization and reorganization of motor unit properties. The normal size-dependent matching of motoneurons and their muscle units with respect to the numbers of muscle fibers per motoneuron was unaltered by synchronous activation of all of the motor units with the same daily activity. Hence, the restored size relationships and rematching of motoneuron and muscle unit properties after nerve injuries and muscle reinnervation sustain the normal gradation of muscle force during movement by size-ordered recruitment of motor units and the process of rate coding of action potentials. Dynamic modulation of size of muscle fibers and their contractile speed and endurance by neuromuscular activity allows for neuromuscular adaptation in the context of the sustained organization of the neuromuscular system according to the size principle.  相似文献   

4.
Four muscle fibre types are described in the biceps and extensor digitorum communis muscles of the newt forelimb. The histological criteria forming the basis for the distinctions include differential staining with p-phenylenediamine and succinate dehydrogenase histochemistry and electron microscopy. In addition, three distinctive motor unit types are described for the biceps muscle. These are fast units, slow units and intermediate units. The structure of muscle fibre and the physiological characteristics of muscle fibres belonging to each motor unit, have been correlated by using iontophoretic passage of Lucifer yellow into muscle fibres belonging to physiologically characterized motor units and their subsequent histological identification by the succinate dehydrogenase reaction. The three motor unit types correspond to slow muscle fibres, intermediate muscle fibres and two classes of fast muscle fibres.  相似文献   

5.
Structure and function are reviewed in the masticatory muscles and in the muscles of the lower face and tongue. The enormous strength of jaw closure is in large part due to the pinnated arrangement of the muscle fibres in the masseter. This muscle, like other masticatory muscles, is unusual in that the cell bodies of the muscle spindle afferents lie in the brain stem rather than in an external ganglion; spindles are absent in the lower facial muscles. Although few data are available, the numbers of motor units in the masticatory muscles, and probably in the lower facial muscles also, appear to he much greater than in limb muscles. The motor units in the facial and tongue muscles are largely composed of histochemical type II (‘fast-twitch’) fibres, but in the masticatory muscles there are substantial numbers of fibres intermediate between type I (‘slow twitch’) and type II, and fibre type grouping is present. In comparison with limb muscles, there is little information on ageing changes in oro-facial muscles. The masticatory muscles do, however, show some atrophy and loss of X-ray density, while motor unit twitches are prolonged. Strength is reduced in the tongue and masticatory muscles. It is known that limb muscle properties are largely governed by their innervation, both through the pattern and amount of impulse activity, and the delivery of trophic messengers; the situation for oro-facial muscles is unclear. The structural and functional differences between the two types of muscle indicate the need for conducting ageing studies on the oro-facial muscles, rather than relying on extrapolations from limb muscles.  相似文献   

6.
Rate-coding in spinal motoneurons was studied using high-frequency magnetic stimulation of the human motor cortex. The subject made a weak contraction to cause rhythmic (i.e., tonic) discharge of a single motor unit in flexor (or extensor) carpi radialis or tibialis anterior, while the motor cortical representation of that muscle was stimulated with brief trains of pulses from a Pyramid stimulator (4 Magstim units connected by 3 BiStim modules). An "m@n" stimulus train consisted of m number of pulses (1-4), with an interpulse interval (IPI) of n ms (1-6). Peristimulus time histograms were constructed for each stimulus condition of a given motor unit, and related to the average rectified surface electromyography (EMG) from that muscle. Surface EMG responses showed markedly more facilitation than single-pulse stimulation, with increasing numbers of pulses in the train; responses also tended to increase in magnitude for the longer IPI values (4 and 6 ms) tested. Motor-unit response probability increased in a manner comparable to that of surface EMG. In particular, motoneurons frequently responded twice to a given stimulus train. In addition to recruitment of new motor units, the increased surface EMG responses were, in part, a direct consequence of short-term rate-coding within the tonically discharging motoneuron. Our results suggest that human corticomotoneurons are capable of reliably following high-frequency magnetic stimulation rates, and that this activity pattern is carried over to the spinal motoneuron, enabling it to discharge at extremely high rates for brief periods of time, a pattern known to be optimal for force generation at the onset of a muscle contraction.  相似文献   

7.
The knee jerk was elicited during regular firing of relatively low-threshold motor units of the biceps femoris muscle (during weak voluntary contraction). Besides the reflex response of the rectus femoris muscle, synchronous discharges of motor units of the biceps femoris muscle and activation of new motor units also were observed. Poststimulus histograms and statistical analysis of interspike intervals of motor units of the biceps femoris muscle revealed well-marked excitatory influences synchronous with the reflex response of the rectus femoris. This result can be explained by the presence of excitatory inputs of Ia afferents on motoneurons of the antagonist muscle. In the knee jerk, excitation of motoneurons of the antagonist was followed by later inhibitory influences which evidently correspond to the "silent period" of motoneurons of the agonist muscle during the elicitation of its tendon reflex.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 624–632, November–December, 1976.  相似文献   

8.
The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap ''in-series''. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.  相似文献   

9.
Studies on skinned fibers and single motor units have indicated that slow-twitch fibers are stiffer than fast-twitch fibers. This suggests that skeletal muscles with different motor unit compositions may have different short-range stiffness (SRS) properties. Furthermore, the natural recruitment of slow before fast motor units may result in an SRS-force profile that is different from electrical stimulation. However, muscle architecture and the mechanical properties of surrounding tissues also contribute to the net SRS of a muscle, and it remains unclear how these structural features each contribute to the SRS of a muscle. In this study, the SRS-force characteristics of cat medial gastrocnemius muscle were measured during natural activation using the crossed-extension reflex, which activates slow before fast motor units, and during electrical activation, in which all motor units are activated synchronously. Short, rapid, isovelocity stretches were applied using a linear puller to measure SRS across the range of muscle forces. Data were collected from eight animals. Although there was a trend toward greater stiffness during natural activation, this trend was small and not statistically significant across the population of animals tested. A simple model, in which the slow-twitch fibers were assumed to be 30% stiffer than the fast-twitch fibers, was used to simulate the experimental results. Experimental and simulated results show that motor unit composition or firing rate has little effect on the SRS property of the cat MG muscle, suggesting that architectural features may be the primary determinant of SRS.  相似文献   

10.
When a muscle innervation originates from more than one spinal cord segment, the injury of one of the respective ventral roots evokes an overload, and alters the activity and properties of the remaining motor units. However, it is not well documented if the three types of motor units are equally represented within the innervating ventral roots. Single motor units in the rat medial gastrocnemius muscle were studied and their contractile properties as well as distribution of different types of motor units belonging to subpopulations innervated by axons in L4 and L5 ventral roots were analyzed. The composition of the three physiological types of motor units in the two subpopulations was similar. Force parameters were similar for motor units belonging to the two subpopulations. However, the twitch time parameters were slightly longer in L4 in comparison to L5 motor units although the difference was significant only for fast resistant to fatigue motor units. The force-frequency relationships in the two subpopulations of motor units were not different. Concluding, the two subpopulations of motor units in the studied muscle differ in the number of motor units, but contain similar proportions of the three physiological types of these units and their contractile properties are similar. Therefore, the injury of one ventral root evokes various degrees of muscle denervation, but is non-selective in relation to the three types of motor units.  相似文献   

11.
The joint activity of simultaneously active motor units was analyzed, using several methods including interunit interval and expectation density functions. The results show that there is no significant interaction between any motor units and, except for a slight coupling, the units fire independently of one another. The coupling is weak but pervasive and affects motor units overlapping and disjoint territories. Synchronous action potentions were recorded at sites whose distance is greater than the acknowledged diameter of motor unit territories. It is proposed that these expansive motor units and the viscoelastic properties of muscle are responsible for smooth contractions in human muscle.This work was supported in part by the Social Rehabilitation Service through the Krusen Research Center, Temple University, Philadelphia, Pennsylvania, while Dr. Shiavi was with the Biomedical Engineering and Science Program, Drexel University, Philadelphia, Pennsylvania, and the Krusen Research Center.  相似文献   

12.
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.  相似文献   

13.
The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force–velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force–velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested.  相似文献   

14.
Spike-triggered averaging (STA) of muscle force transients has often been used to estimate motor unit contractile properties, using the discharge of a motor unit within the muscle as the triggering events. For motor units that exert torque about multiple degrees-of-freedom, STA has also been used to estimate motor unit pulling direction. It is well known that motor unit firing rate and weak synchronization of motor unit discharges with other motor units in the muscle can distort STA estimates of contractile properties, but the distortion of STA estimates of motor unit pulling direction has not been thoroughly evaluated. Here, we derive exact equations that predict that STA decouples firing rate and synchronization distortion when used to estimate motor unit pulling direction. We derive a framework for analyzing synchronization, consider whether the distortion due to synchronization can be removed from STA estimates of pulling direction, and show that there are distributions of motor unit pulling directions for which STA is insensitive to synchronization. We conclude that STA may give insight into how motoneuronal synchronization is organized with respect to motor unit pulling direction. Action Editor: David Terman  相似文献   

15.
16.
Although the behaviour of individual motor units is classically studied with intramuscular EMG, recently developed techniques allow its analysis also from EMG recorded in multiple locations over the skin surface (high-density surface EMG). The analysis of motor units from the surface EMG is useful when the insertion of needles is not desirable or not possible. Moreover, surface EMG allows the measure of motor unit properties which are difficult to assess with invasive technology (e.g., muscle fiber conduction velocity or location of innervation zones) and may increase the number of detectable motor units with respect to selective intramuscular recordings. Although some limitations remain, both the discharge pattern and muscle fiber properties of individual motor units can currently be analyzed non-invasively. This review presents the conditions and methodologies which allow the investigation of motor units with surface EMG.  相似文献   

17.
Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the ‘size principle’, governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.  相似文献   

18.
Reports on measurement of muscle fiber conduction velocity in humans are scarce. Inferences on the behavior of conduction velocity have been drawn from the behavior of myoelectric spectral parameters. The present report contains information on conduction velocity and spectral parameters studied at various muscle contraction levels and during and after sustained contractions. The following results have been obtained from measurements on the tibialis anterior muscle. Conduction velocity demonstrated a positive correlation with limb circumference and with muscle force output. Thus we conclude that the diameters of the muscle fibers of high-threshold motor units are, on an average, larger than those of low-threshold motor units. The study of a sustained contraction and on the recovery after such a contraction revealed that conduction velocity consistently decreased during a strong contraction as did various myoelectric spectral parameters. However, the spectral parameters decreased approximately twice as much as did the conduction velocity, and we conclude that factors other than the conduction velocity along the muscle fibers affect the myoelectric signal during a high-level contraction. These other factors appertain to changes in the firing statistics of individual motor units as well as the correlation between the firings of different motor units.  相似文献   

19.
Immunocytochemical characteristics of myosin have been demonstrated directly in normal and cross-reinnervated skeletal muscle fibers whose physiological properties have been defined. Fibers belonging to individual motor units were identified by the glycogen-depletion method, which permits correlation of cytochemical and physiological data on the same fibers. The normal flexor digitorum longus (FDL) of the cat is composed primarily of fast-twitch motor units having muscle fibers with high myosin ATPase activity. These fibers reacted with antibodies specific for the two light chains characteristic of fast myosin, but not with antibodies against slow myosin. Two categories of fast fibers, corresponding to two physiological motor unit types (FF and FR), differed in their immunochemical response, from which it can be concluded that their myosins are distinctive. The soleus (SOL) consists almost entirely of slow-twitch motor units having muscle fibers with low myosin ATPase activity. These fibers reacted with antibodies against slow myosin, but not with antibodies specific for fast myosin. When the FDL muscle was cross-reinnervated by the SOL nerve, twitch contraction times were slowed about twofold, and motor units resembled SOL units in a number of physiological properties. The corresponding muscle fibers had low ATPase activity, and they reacted with antibodies against slow myosin only. The myosin of individual cross-reinnervated FDL muscle units was therefore transformed, apparently completely, to a slow type. In contrast, cross-reinnervation of the SOL muscle by FDL motoneurons did not effect a complete converse transformation. Although cross-reinnervated SOL motor units had faster than normal twitch contraction times (about twofold), other physiological properties characteristic of type S motor units were unchanged. Despite the change in contraction times, cross-reinnervated SOL muscle fibers exhibited no change in ATPase activity. They also continued to react with antibodies against slow myosin, but in contrast to the normal SOL, they now showed a positive response to an antibody specific for one of the light chains of fast myosin. The myosins of both fast and slow muscles were thus converted by cross-reinnervation, but in the SOL, the newly synthesized myosin was not equivalent to that normally present in either the FDL or SOL. This suggests that, in the SOL, alteration of the nerve supply and the associated dynamic activity pattern are not sufficient to completely respecify the type of myosin expressed.  相似文献   

20.
Differences between motor units in hindlimb locomotor muscles of male and female Wistar rats were studied. The contractile and action potential properties of various types of motor units as well as proportions of these units in the medial gastrocnemius muscle were analyzed. Experiments were based on functional isolation and electrical stimulation of axons of single motor units. Composition of motor units was different for male and female subjects, with higher number of the fast fatigable and lower number of slow type units in male animals. The contraction and the half-relaxation times were significantly longer in male motor units, what might be due to differences in muscle size. Slower contraction of male motor units likely corresponds to lower firing rates of their motoneurons. On the other hand, no significant differences between sexes were observed with respect to force parameters of motor units (the twitch and the maximum tetanus forces), except the fast resistant units (higher force values in male muscles). The mass of the muscle was approximately 1.5 time bigger in male rats. However, the mean ratio of motor unit tetanus force to the muscle mass was almost twice smaller in this group, what indirectly suggests that muscles of male rats are composed of higher number of motor units. Finally, female muscles appeared to have higher fatigue resistance as the effect of higher proportion of resistant units (slow and fast resistant) and higher values of the fatigue index in respective motor unit types. The motor unit action potentials in female rats had slightly lower amplitudes and shorter time parameters although this difference was significant only for fast resistant units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号