首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A definite cytotoxic activity was developed in a BALB/c (H-2d) anti-DBA/2 primary mixed leukocyte culture (MLC), which received interleukin 2 (IL-2) on day 3 of culture. This cytotoxic activity was minor histocompatibility antigens (MIHA)-specific at the stimulator level, and was not developed in a syngeneic (BALB/c anti-BALB/c) MLC. The addition of IL-2 on day 3 of culture was crucial; no or very weak cytotoxic activity was developed in MLC receiving IL-2 on day 0 or on both day 0 and day 3. Only appropriate MIHA-allogeneic tumor cells were lysed as the target of the cytotoxic activity. The cytotoxic activity seemed MIHA-specific also at the target level; it lysed tumor cells of DBA/2 mouse origin but not those of BALB/c (syngeneic) origin. Phenotypes of the cytotoxic effector cell were Thy-1+ Lyt-2+. We concluded from these results that MIHA-specific cytotoxic T lymphocytes (CTL) were generated in the MIHA-allogeneic primary MLC. In this newly developed system, we studied genetic and antigenic requirements for primary anti-MIHA CTL responses in vitro. We demonstrated; among spleen cells (SC) of seven B10 H-2-congenic strains only SC of B10.D2 strain whose major histocompatibility complex (MHC) (H-2d) was compatible with the responder MHC effectively stimulated responder BALB/c (H-2d) SC for an anti-MIHA (DBA-C57BL-common) CTL response. Similarly, only SC of two out of seven C x B recombinant inbred strains (C x B.H and C x B.D), which were compatible at the MHC with responder SC, activated responder BALB/c SC for the response. The possibility that cells responding to H-2 alloantigens suppressed the anti-MIHA response was ruled out. Additional experiments showed that compatibility at the H-2K-end or the H-2D-end of the MHC was sufficient for a definite anti-MIHA response. These provided formal evidence that primary anti-MIHA CTL responses in vitro were MHC-restricted at the stimulator level. We then showed that sonication-disrupted SC or Sephadex G-10 column-passed nonadherent SC failed to stimulate responder SC for a primary anti-MIHA CTL response, whereas G-10-passed nonadherent SC responded well to adherent stimulator cells. Further study demonstrated that Ia+ adherent cells were the most active cell type as stimulator. Finally, we confirmed that the primary anti-MIHA CTL responses to adherent stimulator cells was MHC-restricted.  相似文献   

2.
Virus specificity of human influenza virus-immune cytotoxic T cells.   总被引:4,自引:0,他引:4  
The virus specificity of human in vitro cytotoxic T cell responses to influenza virus was studied with the use of peripheral blood mononuclear leukocytes from normal adult volunteers. Previous natural exposure of these donors to a variety of type A influenza viruses was documented by HI antibody titers. Cells sensitized in vitro with A/HK or A/PR8 were cytotoxic for autologous target cells infected with A/HK, A/PR8, or A/JAP 305 type A influenza viruses, but not for B/HK-infected or uninfected cells. B/HK-sensitized effector cells lysed target cells infected with B/HK but not targets infected with type A viruses. A/HK- and A/PR8-immune effector populations were shown to recognize cross-reactive antigens on A/HK- and A/PR8-infected target cells by cold target competition. Influenza-immune effector cells were cytotoxic for virus-infected autologous targets but much less so for virus-infected allogeneic targets. This self-restriction suggested that the cytotoxicity was largely T cell-mediated and was confirmed by cell separation analysis. Thus, the human secondary cytotoxic T cell response in vitro to influenza viruses is predominantly directed against cross-reactive determinants on cells infected with serologically distinct type A influenza viruses.  相似文献   

3.
Irradiated cells obtained from MLC at the peak of the CTL response caused profound suppression of generation of CTL when added in small numbers at the initiation of primary MLC prepared with normal spleen cells. The inhibitory activity of the MLC cells was not affected by irradiation (1000 rads) but was abolished by treatment with anti-theta serum and complement. The suppression was immunologically specific. The response of A (H-2a) spleen cells toward C3H (H-2k) alloantigens was suppressed by irradiated MLC cells obtained from MLC prepared with A spleen cells and irradiated C3H-stimulating cells, whereas the response of A spleen cells toward DBA/2 (H-2d) alloantigens was affected relatively little. However, if irradiated C3H X DBA/2 F1 hybrid spleen cells were used to stimulate A spleen cells in MLC, addition of irradiated MLC cells having cytotoxic activity toward C3H antigens abolished the response to both C3H and DBA/2 antigens. The response to DBA/2 antigens was much less affected when a mixture of irradiated C3H and DBA/2 spleen cells was used as stimulating cells. Thus, the presence of MLC cells having cytotoxic activity toward one alloantigen abolished the response to another non-cross reacting antigen only when both antigens were present on the same F1 hybrid-stimulating cells. This suppression of generation of CTL by irradiated MLC cells apparently involves inactivation of alloantigen-bearing stimulating cells as a result of residual cytotoxic activity of the irradiated MLC cells. This mechanism may be active during the decline in CTL activity noted in the normal immune response in vivo and in vitro.  相似文献   

4.
This report describes the primary in vitro generation of human CTL that lyse TNP-derivatized autologous cells. Although in the majority of these studies, a direct cytotoxic response to the TNP-modified autologous stimulators was not achieved, in all experiments the addition of either allogeneic cells or soluble antigen triggered the generation of killer cells which destroy TNP-modified, but not unaltered, autologous targets. Fractionation of responder lymphocyte populations demonstrated that the cytotoxic activity was mediated by T cells. Killer cell specificity was tested by assaying for cytotoxicity to a variety of targets, and by blocking the cytolysis of TNP-altered autologous targets with various populations of nonradiolabeled cells. Results indicated that these CTL were cytotoxic for TNP-modified autologous cells but not unaltered autologous or TNP-modified allogeneic targets. The capacity of soluble antigen and alloantigens to facilitate the in vitro generation of altered-self reactive human CTL is not an isolated phenomenon. This "helper" effect has now been observed for the cytotoxic response to chemically modified autologous cells and MHC identical human leukemic blasts. It is possible that in vivo, similar responses to nonspecific antigenic stimuli may play a role in the maintenance of immune surveillance.  相似文献   

5.
Induction of tolerance for skin allotransplantation requires selective suppression of the host response to foreign histocompatibility antigens. This report describes a new approach which employs pre-treatment with 8-methoxypsoralen (8-MOP) and ultraviolet A light (UVA) to render the effector cells of graft rejection immunogenic for the syngeneic recipient. Eight days after BALB/c mice received CBA/j skin grafts, their splenocytes were treated with 100 ng/ml 8-MOP and 1 J/cm2 UVA prior to reinfusion into naive BALB/c recipients. Recipient mice were tested for tolerance to alloantigens in mixed leukocyte culture (MLC), cytotoxicity (CTL), delayed-type hypersensitivity assays (DTH), and challenge with a fresh CBA/j graft. Splenocytes from BALB/c recipients of photoinactivated splenocytes containing the effector cells of CBA/j alloantigen rejection proliferated poorly in MLC and generated lower cytotoxic T-cell responses to CBA/j alloantigens in comparison with sensitized and naive controls and suppressed the MLC and CTL response to alloantigen from sensitized and naive BALB/c mice. In vivo, the DTH response was specifically suppressed to the relevant alloantigen in comparison with controls. BALB/c mice treated in this fashion retained a CBA/j skin graft for up to 42 days post-transplantation without visual evidence of rejection. These results showed that reinfusion of photoinactivated effector cells resulted in an immunosuppressive host response which specifically inhibited in vitro and in vivo responses that correlate with allograft rejection and permitted prolonged retention of histoincompatible skin grafts.  相似文献   

6.
The specificity of H-2 unrestricted cytotoxic T cells was analyzed in secondary CML responses. A/J strain effector cells, sensitized against A.Tlab lymphoid cells, lysed target cells from strains with differing H-2 haplotypes but all sharing Qa-1b/Tlab alleles; whereas, target cells from strains with Qa-1a/Tlaa were not. When B6.Tlaa animals were in vivo-primed and challenged in vitro with B6 stimulator cells, no cytotoxic effector cell activity was generated. However, if B6.Tlaa animals were primed in vivo with A.BY cells and then rechallenged in vitro with either A.BY or B6 stimulator cells, cytotoxic effector cells were generated that lysed target cells from strains with Qa-1b/Tlab alleles. This suggests that factors in addition to Qa/Tla may play a role in the generation of anti-Qa/Tla effector cell activity. It was also noted that targets from strains with Qa-1a/Tlaa alleles were killed, although to a much lesser extent than the Qa-1b/Tlab targets. SWR anti-DBA/1 efffector cells strongly lysed target cells frrom strains with Qa-1b/Tlab, lysed Qa-1a/Tlaa targets to a lesser extent, and produced no cytotoxic effect on B6.Tlaa target cells. These data suggest that in addition to a CML target antigen associated with Qa-1b/Tlab, there may be an additional specificity recognized by cytotoxic T cells controlled by a gene outside of Qa-1b/Tlab.  相似文献   

7.
Summary Tumour-specific cytotoxic T lymphocytes (CTL) are usually obtained after immunization in vivo and restimulation of immune cells in vitro. We here describe the generation of syngeneic tumour-specific CTL within no more than 9 days by priming and restimulation in vivo. This is achieved only if the correct sites are used both for primary immunization (ear pinna) and for restimulation (peritoneal cavity). The kinetics of immune T cell induction and of the secondary response in vivo will be reported. While a secondary CTL response could be generated in the peritoneal cavity, this was not possible in the spleen, no matter which routes of antigen restimulation were used. Upon transfer of immune spleen cells into the peritoneal cavity but not into the spleen, a secondary response could be generated upon in situ restimulation, indicating the importance of the correct microenvironment for this type of response. The peritoneal effector cells were true T cells and recognized a tumour-associated antigen in association with the Kd major histocompatibility (MHC class I) antigen. Finally the activated tumour-specific peritoneal exudate cells were able to transfer protective immunity without exogenous interleukin-2 into normal syngeneic mice.  相似文献   

8.
Responder cells from primary syngeneic and allogeneic one-way mixed-lymphocyte cultures (MLC) specifically inhibit the development of cytotoxic T lymphocytes (CTL) directed against the major histocompatibility complex (MHC) antigens of the MLC responder cells. This special kind of suppressor activity is known as veto suppression. Ia+ cells with veto activity obtained from H-2 recombinant mouse strains were shown to downregulate alloantigen (class II)-specific helper activity for class I-specific CTL development in a primary MLC provided that the veto cells expressed the same I-E alpha subregion as the MLC stimulator cells. The veto-induced suppression of allo-help was prevented by the addition of supernatant from concanavalin A-stimulated spleen cells (Con A-SN) and was inhibited considerably by very high amounts of recombinant interleukin-2 (IL-2). In the presence of Con A-SN, CTL precursors recognizing either the K end or the D end of the veto cell MHC were found to be inactivated. Thus, our results indicate that MLC responder cells include active veto cells expressing Ia region-encoded restriction elements for allospecific T helper cells, as well as K- or D-encoded restriction elements for allospecific T cytotoxic cells.  相似文献   

9.
Murine cells (L929, MC57G, and P815 mastocytoma) defectively infected with the egg-adapted vaccine strain of mumps virus were found to be susceptible to cytotoxic T-lymphocyte (CTL)-mediated lysis. In vitro secondary, but not in vivo primary, generated CTL caused cytolysis of these targets in an H-2-restricted manner. UV-inactivated-mumps virus-coated murine cells were also found to be susceptible to CTL-mediated lysis. Comparisons of murine CTL-mediated lysis by three paramyxoviruses (mumps, Sendai, and Newcastle disease viruses) indicated that no cross-reactivity occurred. The CTL response with mumps virus exhibited specific unresponsiveness patterns, as influenced by the H-2 K/D regions of the mouse strains, that were partially different from those of Sendai virus and Newcastle disease virus.  相似文献   

10.
The present study was aimed at gaining insight into means by which stimulation of mouse spleen cells with allogeneic normal cells in mixed leukocyte cultures (MLC) can result in the generation of effector cells cytotoxic for syngeneic tumor or transformed cells. Stimulation of lymphocytes from BALB/c or C3H mice for 5 days with cells from mice of every allogeneic strain tested, in medium containing mouse serum and lacking xenogeneic serum, resulted in the activation of effectors cytotoxic for syngeneic cells transformed spontaneously or by SV40, polyoma or adenovirus. In each experiment, all of the syngeneic transformed cell lines, as well as clones derived from these lines, were lysed to the highest degree by effectors obtained from the same culture, and therefore stimulated with cells from the same allogeneic strain. Although the particular allogeneic sensitizing strain that induced the highest cytolytic activity varied between experiments, effectors obtained from the culture with the highest cell recovery always exhibited the greatest cytotoxicity against all the syngeneic transformed cells and clones. Lysis was mediated predominantly by Ly-2+ effectors; total lytic units of cytotoxicity recovered after treatment with monoclonal anti-Ly-2 antibody and complement (C) were reduced by 85 to 90% compared to cells treated with C alone. Lysis of syngeneic tumor cells by the allosensitized effectors in cytotoxicity assays was not inhibited by the addition of unlabeled "blocking" lymphocytes from the allogeneic strain used for sensitization. In addition, it was found that lymphocytes cultured without stimulating cells for 5 days in medium supplemented with supernatants from secondary MLC that are known to contain high levels of lymphokines, mediated high levels of cytotoxicity on all the transformed cells tested, but lacked detectable cytotoxic activity for syngeneic or allogeneic Con A blasts. The MLC supernatant-activated effectors that lyse the transformed cells are phenotypically CTL, because treatment with anti-Ly-2 and C reduced lytic activity by approximately 75%. Taken together, these findings suggest that the generation in MLC of Ly-2+ effector cells cytotoxic for syngeneic transformed cell lines might not be due, in some cases, to lymphocyte responses to particular alloantigens on the stimulating cells that are cross-reactive with "alien" histocompatibility antigens on transformed cells, but rather is due to effector cell activation by lymphokines produced during allogeneic stimulation.  相似文献   

11.
H-Y-specific and H-2Db-restricted, Lyt-1-2+ T-cell clones ( CTLL ) with graded specific cytotoxic activities on male C57BL/6 (B6) target cells ( 1E3 , ; 2C5 , ++; 2A5 , +, 3E6 , +/-) were tested for their capacity to inhibit the generation of H-Y-specific cytotoxic T lymphocytes (CTL) in vitro. Addition of irradiated lymphocytes of CTLL 1E3 and CTLL 3E6 but not those of CTLL 2A5 or CTLL 2C5 abolished the generation of CTL from in vivo primed H-Y-specific precursor cells (CTLP) when added to fresh mixed-lymphocyte cultures (MLC). Exogenous sources of T-cell growth factors (TCGF) did not overcome suppression. Rather the presence of TCGF resulted in a further enhancement of suppressive activities in CTLL 1E3 and 3E6 and the induction of similar activities in cells from CTLL 2A5 and 2C5 , which by themselves were not inhibitory. Moreover when added to similar MLC on Day 1 instead of Day 0, only irradiated cells of CTLL 3E6 but not those of the other three CTLL were suppressive. Induction of suppressive activities in H-Y-specific CTLL was independent of the appropriate male stimulator cells since it was also observed in MLC induced by irrelevant antigens (H-2, trinitrophenol). Furthermore at low cell numbers, irradiated lymphocytes from any of the CTLL consistently enhanced CTL activities generated from H-Y-specific CTLP. This augmenting activity, which was not TCGF, could be transferred by soluble mediators present in antigen-sensitized CTLL cultures. Thus, these data indicate (i) that cytotoxic effector cells can function as suppressor cells in the generation of CTL, (ii) that the cytotoxic activity of cloned CTL does not correlate with their capacity to suppress CTL responses, (iii) that the inhibition of CTL responses by CTLL is not due to simple consumption of T-cell growth factors produced in MLC, and (iv) that different CTL clones may interfere with the generation of CTL at different stages of their maturation. Moreover, the experiments suggest an antigen-independent enhancement of suppression by the interaction of CTL with lymphokines. Together with the augmenting activity evoked by cloned CTL the data provide strong evidence for the expression of multiple immunological functions by one particular subset of T cells and suggest that cytotoxic effector cells can differentially regulate the maturation and/or clonal expression of their precursor cells.  相似文献   

12.
It has been demonstrated previously that draining lymph nodes (DLN) from tumor-immunized mice contain a population of lymphoid cells that are capable of differentiating into functional antitumor cytotoxic T lymphocytes (CTL) during in vitro culture. In the present studies, it was observed that DLN cells from either C57BL/10 (B10) or C3H mice that had been footpad-immunized with syngeneic tumor cells differentiated into CTL during a 4-day in vitro culture in the absence of added antigen. The specificity patterns of the CTL thus generated, however, were quite different in the two strains. DLN from B10 mice immunized with ultraviolet light-induced fibrosarcoma cells of B10 origin differentiated into CTL which were only capable of lysing target cells from the tumor used for immunization. Thus, the antitumor CTL which differentiate from B10 DLN appeared to be specific for the tumor-specific antigen (TSA) expressed by these tumor cells. In contrast, DLN from C3H mice immunized with a syngeneic ultraviolet light-induced fibrosarcoma differentiated into CTL which effectively lysed not only target cells from the immunizing tumor, but several other fibrosarcomas of both B10 and C3H origin, and which did not lyse normal nontumor targets. These C3H effectors thus appeared to be specific for a tumor-associated antigen (TAA) which is widely shared by a number of tumors. Cold target-blocking studies demonstrated that the CTL generated by C3H DLN cells contained a subpopulation of TSA-specific cells in addition to cross-reactive TAA-specific effectors. (B6 X C3H)F1 (B6C3F1) mice generated cross-reactive TAA-specific CTL in response to in vivo challenge with either B10 or C3H tumors, indicating that the ability to generate a TAA-specific CTL response behaves as a dominant trait of the responding mouse strain and not as a function of the tumor used for immunization. TSA-specific CTL and cross-reactive TAA-specific CTL were distinguishable on the basis of their cell surface phenotypes, because the TSA-specific CTL generated by B10 DLN cells were Thy-1.2+ Lyt-2.2+, whereas TAA-specific B6C3F1 CTL were Thy-1.2+ Lyt-2.2-; alloantigen-specific CTL generated from the same B6C3F1 lymph nodes were Thy-1.2+ Lyt-2.2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Class I alloantigen incorporated into cell-size supported membranes provides an effective stimulus for in vitro stimulation of CTL responses. When alloantigen-bearing cell-size (5 microns) microspheres, termed large multivalent immunogen (LMI), were administered in vivo, no primary cytotoxic response to the Ag could be detected. However, coadministration of LMI and allogeneic tumor stimulator cells resulted in substantial augmentation of the resulting CTL response, compared with that obtained from mice that received just stimulator cells. Responses were augmented only when the same alloantigen was present on the LMI and on the stimulator cells, and the effector cells remained specific for the cognate alloantigen-bearing targets. The physical form of the alloantigen was critical for augmentation; alloantigen in liposomes had no effect on response levels. Tumor cell Ag in the form of purified plasma membrane vesicles can also be incorporated onto the surface of cell-size microspheres. As with allogeneic responses, tumor Ag on LMI specifically augmented the in vivo CTL activity generated in response to irradiated tumor cells in syngeneic mice. Administration of Ag-bearing LMI to mice inoculated i.p. with live P815, EL4, or RDM4 tumor cells resulted in a significant reduction in growth of the tumors in their syngeneic hosts. Similarly, LMI treatment significantly reduced growth of P815 as a solid s.c. tumor. LMI-mediated growth reduction occurred only when plasma membrane Ag from the cognate tumor was used to prepare the LMI, and Ag in the form of free plasma membrane vesicles was not effective. Although Ag has been used to manipulate in vivo humoral and Th responses, this has proven to be much more difficult for CTL responses. The ability of Ag-bearing LMI to affect significantly the in vivo levels of cytolytic response and to reduce syngeneic tumor growth has potential for application to tumor immunotherapy and, possibly, treatment of other diseases in which CTL can provide a protective effect.  相似文献   

14.
The TCR-alpha beta of CTL recognize peptide Ag in association with MHC class I molecules. TCR binding should be highly specific to guarantee pathogen specificity and to avoid self-reactivity. Therefore, the in vivo relevance of T cells exhibiting cross-reactivities in vitro and the respective role of the TCR affinities involved are not clear. To analyze high and low avidity T cell activities both in vitro and in vivo, we investigated primary and clonal CTL responses specific for the lymphocytic choriomeningitis virus nucleoprotein 118-126 epitope in association with the two closely related H-2Ld or H-2Lq molecules. As expected, we found highly specific class I-allele-restricted CTL responses when antiviral protection or immunopathology in vivo and lysis of virus infected target cells in vitro were analyzed. In contrast, the CTL were MHC crossreactive and thus considerably less discriminatory against targets expressing high MHC-peptide densities and in proliferation assays. The data show that relatively high TCR avidities are required for virus neutralization in vivo, in contrast to in vitro analyses of peptide-coated target cells or proliferative T cell responses that may engage TCR of low avidity and broad specificity and therefore may not reflect biologically relevant TCR avidities.  相似文献   

15.
Tumors contain many antigens that may be recognized by the immune system. It is not known whether these antigens, and the epitopes within these antigens, can all be recognized by the anti-tumor immune response or if such responses are restricted to a few dominant epitopes. Effector function of endogenous cytotoxic T lymphocytes (CTL) generated during tumor progression has previously been assessed by indirect, ex vivo assays, which often focused on a single antigen. Therefore, we evaluated the endogenous in vivo CTL response to multiple neo tumor antigens using murine Lewis lung carcinoma tumor cells transfected with ovalbumin or a polyepitope construct. Both express multiple MHC class I-restricted epitopes. Ovalbumin contains a known hierarchy of epitopes for given MHC molecules, whilst the polyepitope expresses a number of dominant epitopes. We show that as tumors progress, potent effector CTL are generated in vivo that are restricted to dominant epitopes; we did not see the responses to subdominant or cryptic epitopes. Our data show that the CTL recognizing tumor antigens vary in their lytic capacity, as the CTL responding to two of the four epitopes were particularly potent killers. The presence of these effector CTLs did not prevent tumor growth. However, intra-tumoral IL-2 treatment altered the potency, but not the hierarchy, of these CTL such that they mediated tumor regression. These results have implications for immunotherapy protocols.  相似文献   

16.
Dendritic cells (DC) have been successfully used in clinical pilot studies to induce tumor-specific immunity as well as clinical response in selected patients. However, DC-based immunotherapy remains a challenge and several parameters need to be examined in order to optimize the induction of anti-tumor immune responses. This study focuses on DC vaccination for leukemia and evaluates the in vitro efficacy of three different strategies for generating antigen-loaded DC-based vaccines for the induction of major histocompatibility complex (MHC) class I-restricted anti-leukemia cytotoxic T lymphocyte (CTL) responses. These included direct fusion of DC with leukemia cells to generate DC-leukemia cell hybrids, and DC pulsed with either apoptotic leukemia cell fragments or whole tumor cell lysates. Using either the U937 cell line or primary human acute myeloid leukemia blasts (AML), DC-leukemia cell hybrids were found to be the most potent in vitro inducers of CTL activity. DC pulsed with apoptotic tumor cell fragments were less efficient, but induced a more potent CTL response compared to tumor lysate-pulsed DC. The CTL responses were both MHC class I-restricted and antigen-specific, as shown by the inability of the CTL to lyse other control targets. The data presented here suggest that the method of antigen loading onto DC may be critical in the design of tumor vaccines.  相似文献   

17.
Reexposure of day 14 murine mixed leukocyte culture (MLC) populations to the original irradiated allogeneic stimulating spleen cells has previously been found to result in the ratpid generation of cytolytic T lymphocytes (CTL) associated with a net increase in cultured cell number. Under the experimental conditions used, day 5 MLC cells appeared unable to respond to the allogeneic stimulus. In order to characterize further the development of the potential for anamnestic reactivity during the course of MLC, C57BL/6 spleen cells were incubated with irradiated (1000 rads) DBA/2 spleen cells (primary MLC) for up to 3 weeks. At various time intervals after the onset of the primary MLC, the surviving cells were collected and reexposed, at varying cell concentrations, to irradiated DBA/2 spleen cells (secondary MLC). At daily intervals thereafter, CTL activity was assessed using a quantitative 51Cr-release assay system. A paradoxic effect of responding cell concentration on generation of CTL activity was observed; relatively greater increase in CTL activity was observed as the concentration of responding cells was decreased over a 100-fold range. This effect was more pronounced with responding cells reexposed to antigen after primary MLC for 20 days, but was observed even with normal cells. The apparent unresponsiveness of day 5 MLC cells to alloantigen restimulation could be overcome by simple dilution of responding cells. Cytotoxic activity at the time of restimulation with antigen seems to be a major factor determining the magnitude of the secondary response. Since intact cells bearing alloantigens are required for the generation of CTL in MLC, residual cytotoxic cells reduce the effective antigenic stimulus by destroying stimulating cells. This effect of concentration of responding cells on generation of CTL in MLC complicates interpretation of experiments investigating the role of "inhibitor" and "helper" cell in cell-mediated immune responses occurring in vitro. Under optimal conditions, the highest CTL activity and the largest increase in total cell number was observed 4 days after restimulation of day 10 MLC cells. On a per cell basis, the lytic activity was up to 4 times greater than that observed at the peak of a primary response, and the number of viable cells recovered was nearly 20 times higher than that at the onset. Such secondary MLC are thus a convenient source of lymphoid cells selected primarily on the basis of proliferation induced by alloantigens.  相似文献   

18.
Pichinde virus (PV), a member of the arenavirus group, was found to elicit strong cell-mediated immune responses in various strains of mice. After primary i.v. inoculation, augmentation of natural killer (NK) cell activity occurred and peaked 3 to 4 days after infection. The NK response was followed by a second peak of cytotoxic activity that was found to be H-2 restricted, virus specific, and mediated by Thy-1.2+, Lyt-2.2+ lymphocytes. This cytotoxic T lymphocyte (CTL) response peaked 7 days post infection. Neutralizing antibodies were not detectable after PV infection of the mice. In light of this, we investigated the generation and kinetics of secondary cell-mediated immune responses after reinjection of homologous virus in vivo. Slight but significant augmentation of NK activity was observed 1 day after secondary virus challenge. As in the primary response, effectors of this NK activity rapidly became sensitive to anti-Thy-1.2 and complement treatment. NK activity rapidly returned to background levels and was followed by an anamnestic CTL response that peaked 4 days after reinjection of the virus. Thus, cell-mediated immune responses appeared more rapidly after secondary challenge in vivo, and the temporal relationship between NK and CTL generation was maintained. Both secondary NK and CTL responses were generated in mice that had been pretreated with cyclophosphamide (CY), suggesting that memory cell-mediated immune responses can be reactivated in vivo without undergoing cell division. In contrast, treatment with CY before primary infection delayed the appearance of virus-induced NK activity and abrogated the generation of H-2-restricted virus-specific CTL. Rechallenge of these CY-treated NK-primed mice resulted in the rapid generation of a secondary NK response that was not followed by either a primary or secondary CTL response. The data suggest that cells mediating a nonspecific effector function may possess specific memory. We discuss our results with respect to possible NK-CTL relationships.  相似文献   

19.
This study was designed to determine the role of CD25(+)CD4(+) regulatory T (Tr) cells in CTL maturation and effector functions using a murine CTL line and in vitro MLC. Tr cells inhibited CTL functional maturation, but had no effect on CTL effector functions. In CD4(+) responder T cell-depleted MLC supplemented with IL-2, Tr cells suppressed mature CTL generation only when added within the first 2 days of culture. Tr cells down-regulated levels of active Akt, but not STAT5 or ZAP70 in Ag-primed immature CTLs. Down-regulation of active Akt was accompanied by a reduction in CTL cell size and IL-2Ralpha expression. In Tr cell-depleted MLC, CTLs were generated that exhibited high levels of nonspecific cytotoxicity. Our in vitro findings suggest that Tr cells regulate functional CTL maturation to generate optimal Ag-specific immune responses through the control of the PI3K/Akt pathway.  相似文献   

20.
Activation of peripheral blood lymphocytes (PBL) from a melanoma patient either in secondary MLC in which EBV-transformed B cells from the cell line JY were used as stimulator cells, or by co-cultivation with the autologous melanoma cells in a mixed leukocyte tumor cell culture (MLTC) resulted in the generation of cytotoxic activity against the autologous melanoma (O-mel) cells. From these activated bulk cultures four cloned cytotoxic T lymphocyte (CTL) lines were isolated. The CTL clone O-1 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+), and O-36 (T3+, T4-, T8+, OKM-, HNK-, and HLA-DR+) were obtained from MLC, whereas the CTLC clones O-C7 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+) and O-D5 (T3+, T4-, T8+, OKM-1-, HNK, and HLA-DR+) were isolated from autologous MLTC. All four CTL clones were strongly cytotoxic for O-mel cells but failed to lyse autologous fibroblasts and autologous T lymphoblasts. Moreover, the CTL clones lacked NK activity as measured against K562 and Daudi cells. Panel studies indicated that the CTL clones also killed approximately 50% of the allogeneic melanoma cells preferentially, whereas the corresponding T lymphoblasts were not lysed. Monoclonal antibodies against class I (W6/32) and class II (279) MHC antigens failed to block the reactivity of the CTL clones against O-mel and allogeneic melanoma cells, indicating that a proportion of human melanoma cells share determinants that are different from HLA antigens and that are recognized by CTL clones. In contrast to the CTL clones isolated from MLTC, the clones obtained from MLC also lysed JY cells, which initially were used as stimulator cells. The reactivity of O-36 against JY could be inhibited with W6/32, demonstrating that this reactivity was directed against class I MHC antigens. These results suggest that the lysis of O-mel and JY cells by O-36 has to be attributed to two independent specificities of this CTL clone. The specificity of the other cross-reactive CTL clone (O-1) could not be determined. The notion that individual CTL clones can have two specificities was supported by the following observations. The cytotoxic reactivity of both O-1 (T4+) and O-36 (T8+) against JY was blocked by monoclonal antibodies directed against T3 and human LFA-1, and against T3, T8, and human LFA-1, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号