首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapeutic angiogenesis is a potential treatment modality for myocardial ischemia. phVEGF-A(165), phPDGF-BB, or a combination of the two were injected into the myocardial infarct border zone in rats 7 days after ligation of the coronary left anterior descending artery. Cardiac function was measured by echocardiography. Hearts were harvested 1 and 4 weeks after plasmid injection. phVEGF-A(165) increased capillary density more than phPDGF-BB, and phPDGF-BB preferentially stimulated arteriolar growth. The combination increased both capillaries and arterioles but did not enhance angiogenesis any more than single plasmid treatments did. VEGF-A(165) and the combination of phVEGF-A(165) and phPDGF-BB counteracted left ventricular dilatation after 1 week but did not counteract further deterioration.  相似文献   

2.
Previous studies from our laboratory and those of others have shown thyroxine to be a stimulator of coronary microvascular growth. The present study tested the hypothesis that 3,5-diiodothyropropionic acid (DITPA), a thyroid hormone analog with inotropic but not chronotopic characteristics, is angiogenic in the nonischemic heart. Daily injections (3.75 mg/kg sc) of DITPA to Sprague-Dawley rats affected protein increases in vascular endothelial growth factor (VEGF)(164), VEGF(188,) basic fibroblast growth factor (bFGF) (FGF-2), angiopoietin-1, and Tie-2 during the first few days of treatment. After 3 wk of treatment, arteriolar length density and the relative number of terminal arterioles (<10 microm diameter) increased in the left ventricle as determined by image analysis of perfuse-fixed hearts. These findings occurred in hearts that did not undergo changes in mass nor in increases in capillary length density. We conclude that DITPA, which is known to improve ventricular function after infarction, is angiogenic in normal nonischemic hearts.  相似文献   

3.
Summary Both cell therapy and angiogenic growth factor gene therapy have been applied to animal studies and clinical trials. Little is known about the direct comparison between cell therapy and angiogenic growth factor gene therapy. The goal of this study was to compare the effects of human bone marrow-derived mesenchymal stem cells (hMSCs) transplantation and injection of angiogenic growth factor genes in a model of acute myocardial infarction in mice. The hMSCs were obtained from adult human bone marrow and expanded in vitro. The purity and characteristics of hMSCs were identified by flow cytometry and immunophenotyping. Immediately after ligation of the left anterior descending coronary artery in male severe combined immunodeficient (SCID) mice, culture-expanded hMSCs or angiogenic growth factor genes were injected intramuscularly at the left anterior free wall. The engrafted hMSCs were positive for cardiac marker, desmin. Infarct size was significantly smaller in the hMSCs-treated group than in the angiopoietin-1 (Ang-1) or vascular endothelial growth factor (VEGF)-treated group at day 28 after infarction. hMSCs transplantation was better in decreasing left ventricular end-diastolic dimension and increasing fractional shortening than Ang1 or VEGF gene therapy. Capillary density was markedly increased after hMSCs transplantation than Ang1 and VEGF gene therapy. In conclusion, intramyocardial transplantation of hMSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium. hMSCs are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Transplantation of MSCs may become the future therapy for acute myocardial infarction for myocardial regeneration.  相似文献   

4.
We hypothesised that angiopoietin-1 (Ang-1), in conjunction with vascular endothelial growth factor (VEGF) gene therapy, can enhance arteriogenesis and angiogenesis during myocardial ischemia. Mice were given a single intramyocardial injection of saline, phVEGF-A(165) and phAng-1 or a combination thereof into the non-ischemic normal heart or into the ischemic border zone of the infarcted heart. In the normal and the ischemic myocardium, gene transfer of phVEGF-A(165) alone increased the myocardial capillary density by 16% and 36%, respectively, and phAng-1 had a similar effect. In the normal heart, the ratio of arteriolar to capillary densities increased with phVEGF-A(165) and more so in the ischemic myocardium where phAng-1 also had an effect. Furthermore, the combination of plasmids induced an up to 7.5-fold increase. Transient overexpression of VEGF-A(165) boosts endogenous arteriogenesis in addition to capillary angiogenesis. Ang-1 further boosts this effect at the arteriolar level.  相似文献   

5.
The effect of various growth factors on the synthesis of hyaluronan in human fibroblasts was investigated. When tested in medium containing 0.5% fetal calf serum, platelet-derived growth factor (PDGF)-BB was found to stimulate hyaluronan synthesis; the maximal response was equal to or higher than that obtained with 10% fetal calf serum. PDGF-AA gave only a limited effect, indicating that the stimulatory effect of PDGF on hyaluronan synthesis was mainly transduced via the B-type PDGF receptor. Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta 1 also stimulated hyaluronan synthesis; their effects were less than that of PDGF-BB, but combinations of factors produced potent stimulatory effects on hyaluronan synthesis. All factors stimulated hyaluronan synthesis in sparse as well as dense cultures. The effects of the factors on hyaluronan synthesis did not correlate with their mitogenic activities; PDGF-BB, EGF and bFGF are equipotent mitogens, but PDGF-BB had a much more potent effect on hyaluronan synthesis, and TGF-beta actually inhibits the growth of fibroblasts under the conditions of the assay.  相似文献   

6.
The establishment of functional and stable vascular networks is essential for angiogenic therapy. Here we report that a combination of two angiogenic factors, platelet-derived growth factor (PDGF)-BB and fibroblast growth factor (FGF)-2, synergistically induces vascular networks, which remain stable for more than a year even after depletion of angiogenic factors. In both rat and rabbit ischemic hind limb models, PDGF-BB and FGF-2 together markedly stimulated collateral arteriogenesis after ligation of the femoral artery, with a significant increase in vascularization and improvement in paw blood flow. A possible mechanism of angiogenic synergism between PDGF-BB and FGF-2 involves upregulation of the expression of PDGF receptor (PDGFR)-alpha and PDGFR-beta by FGF-2 in newly formed blood vessels. Our data show that a specific combination of angiogenic factors establishes functional and stable vascular networks, and provides guidance for the ongoing clinical trials of angiogenic factors for the treatment of ischemic diseases.  相似文献   

7.
Previous studies have not addressed regional differences in adaptive arteriolar growth in the surviving left ventricular (LV) myocardium after infarction in appropriately aged animals, namely middle-aged or older. Accordingly, we examined the adaptive postinfarction growth of arterioles in two distinct regions, i.e., the LV free wall (LVFW) and septum, of middle-aged rats. We induced a myocardial infarction (MI) in 12-mo-old rats to analyze 1) protein expression in VEGF/Flt-1/Flk-1 and angiopoietin (Ang)-1/Ang-2/Tie-2 systems, 2) the arteriolar DNA synthesis, 3) the extent of the arteriolar bed, and 4) the alteration in minimal coronary vascular resistance. In both regions, arteriolar DNA synthesis was activated between days 4 and 7 after MI. Whereas in the LVFW the degree of DNA synthesis declined between days 11 and 14 post-MI, it continued to rise in the septum, and at day 14, the percentage of the arterioles undergoing DNA synthesis was comparable in the LVFW and the septum (9.7 +/- 1.6 and 7 +/- 2.1%, respectively). Arteriolar DNA synthesis was mainly associated with upregulation of Ang-2 and Tie-2 in both LV regions. Although 4 wk after MI the arteriolar beds in the LVFW and the septum expanded to the size of sham-operated rats, this growth did not compensate for the greater minimal coronary vascular resistance in the former. Thus our findings suggest that 1) the dynamics in adaptive arteriolar growth were similar between the two regions, despite a delay in the septum; and 2) the perfusion deficit in post-MI rats cannot be accounted for by inadequate adaptive growth of arterioles.  相似文献   

8.
Angiogenesis is a crucial event in the progression of diabetic retinopathy. Migration and proliferation of endothelial cells (EC) are important steps in angiogenesis and are caused by angiogenic factors such as basic fibroblast growth factor (bFGF). In this work, capillary EC were isolated from rabbit retinal tissues and rabbit retinal EC (RREC) were found to secrete a migration factor for RREC in conditioned medium (CM). The activity was inhibited by an anti-platelet-derived growth factor (PDGF) antibody, but not by an anti-bFGF antibody. We also found that RREC showed a migratory response to PDGF. The response was induced by PDGF-BB and PDGF-AB dose dependently, but not by PDGF-AA, indicating that it was mediated by PDGF-β receptor-dependent pathways, and that the PDGF-like factor was PDGF-BB or -AB. In addition, PDGF-BB induced the proliferation of RREC as well as bFGF. These data indicate that RREC have an autocrine pathway of PDGF by the secretion of and the response to PDGF. PDGF may play significant parts in angiogenesis in the progression of diabetic retinopathy. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The objective of this study was to investigate the efficacy of combination gene therapy with multiple angiogenic growth factor cDNAs to enhance survival of ischemic skin flaps in a rat model. Sixty Sprague-Dawley rats were divided into six groups. Varying combinations of VEGF165, PDGF-B, and bFGF-plasmids were injected to prefabricate the flaps. Random skin flaps were raised on the dorsal aspect of rats following prefabrication with growth factor cDNAs. Flap viability was determined by measurement of percentage area of survival. The efficacy of gene therapy was evaluated by flap survival and neovascularization of representative histologic sections stained immunohistologically. The VEGF165 plus bFGF cDNAs enhanced the viability of the flap and neovascularization most effectively; the flap survival area was 64.3 +/- 8.7% after transfer of these two growth factor genes. Addition of PDGF-B cDNA is deleterious to the effects of combined VEGF165 and bFGF, leading to a significant decrease in flap viability (44.9 +/- 2.7%). Viability of the flaps with combined VEGF165 and bFGF cDNA transfer was significantly greater than that of the flaps with VEGF165 transfer alone (57.6 +/- 5.2%) or sham plasmid control (52.3 +/- 5.0%). Combined transfer of VEGF165 and bFGF cDNA is the most effective combination of multiple growth factor genes to improve flap viability in this model. Simultaneous transfer of three growth factor genes (VEGF165, PDGF-B, and bFGF) is deleterious to flap survival, at least for the ratio of lipofectin:transgene employed.  相似文献   

10.
The experiments reported were motivated by the observation that in vivo gangliosides promoted angiogenesis when the dose of the angiogenic factor was too low to be effective (Ziche et al.: Laboratory Investigation 61:629-634, 1989). As an approach to understanding the mechanism of this modulatory effect, we analysed the influence that gangliosides have on survival, growth, and migration of capillary endothelium when an angiogenesis factor like basic fibroblast growth factor (bFGF) was present in the culture medium. Clones of bovine capillary endothelium were cultivated in media unable to sustain survival over a 72 h period. With this experimental approach, cell survival was evaluated after addition of either bFGF or gangliosides or both to the medium. The Boyden chamber procedure was utilized to measure the influence of bFGF or gangliosides on cell mobilization across a micropore filter. Low doses of both molecules, ineffective when added singly to the culture media, improved all three parameters when added in combination. A synergic effect between bFGF and the gangliosides (GM1, GD1b, GT1b) was observed for the improvement of survival or growth and for the acceleration of endothelial cell migration. The removal of sialic acid from the ganglioside molecule prevented any effect on all three parameters. The addition of sialic acid alone to cultures was also totally ineffective. In the adult organism most angiogenic events occur under conditions of tissue damage. The synergism between gangliosides and bFGF can be interpreted as the initial phase of a process for which endothelial cell survival is the indispensable first step in the formation of a new vascular network.  相似文献   

11.
We have examined the role of growth factors and extracellular matrix in the proliferation and cell adhesion of a murine mammary carcinoma, SP1, and a stable highly metastatic variant, SP1-3M. On fibronectin, both cell types proliferated strongly in response to basic fibroblast growth factor (bFGF) and platelet-derived growth factor BB (PDGF-BB) after culture for 24 h and 72 h. In contrast, on collagen type I, SP1 cells proliferated only weakly to PDGF-BB at either time, and SP1-3M cells showed a response to PDGF-BB only at 72 h. The proliferative response to bFGF was also consistently lower when the cells were cultured on collagen than on fibronectin. No significant proliferative responses were detected to epithelial growth factor (EGF), transforming growth factor-beta (TGF-beta), or estrogen on any substratum. The lack of responsiveness to PDGF-BB of cells cultured on collagen type I was not due to differences in numbers or affinity of PDGF receptors. We therefore examined the adhesion and spreading properties of SP1 and SP1-3M cells. Without exogenous growth factors, both cell lines adhered to fibronectin and laminin. SP1-3M cells did not bind to collagen type I, whereas SP1 cells did. Attachment to all three substrata was inhibited by anti-beta 1 integrin IgG, suggesting that the primary adhesion to these substrata is mediated by beta 1 integrins. SP1 and SP1-3M cells showed similar integrin patterns following immunoprecipitation by anti-beta 1 integrin IgG. bFGF stimulated increased adhesion and spreading of both SP1 and SP1-3M cells to collagen type I within 24 h, whereas PDGF-BB was less capable of this effect. Our results suggest that the proliferative response of SP1 and SP1-3M cells to PDGF-BB and bFGF is dependent on the extracellular matrix environment, and imply that modification of extracellular matrix and/or surface integrin receptors may regulate responsiveness to these growth factors in the SP1 tumor model.  相似文献   

12.
Basic fibroblast growth factor (bFGF) is an important angiogenic factor produced by hearts subjected to ischemia. However, the direct effects of bFGF on myocardial cells are unknown. Primary cultured cardiac myocytes from neonatal rats were stimulated with lipopolysaccharide (LPS), a potent inducer of inducible nitric oxide synthase (iNOS), in the presence or the absence of bFGF. LPS induced the expression of iNOS in cardiac myocytes, demonstrated at both mRNA and protein levels. We showed that LPS activated the apoptotic pathway, evidenced by TUNEL staining, DNA ladder formation, and morphologic features. LPS-induced apoptosis was blocked by the administration of L-NAME, an inhibitor of NOS. This indicates that LPS induces apoptosis via an iNOS-dependent pathway. Administration of bFGF completely inhibited myocardial cell apoptosis induced by hydrogen peroxide or acidic medium as well as LPS. To determine signaling pathways for this inhibitory effect, we utilized PD098059, an MEK-1-specific inhibitor. PD098059 blocked bFGF-induced activation of ERK (extracellularly responsive kinase)-1/2 and neutralized the apoptotic inhibitory effect of bFGF. These findings demonstrate that LPS induces myocardial cell apoptosis in an iNOS-dependent manner. The results also suggest that bFGF is a protective factor against myocardial cell apoptosis and that this protection requires the MEK-1-ERK pathway.  相似文献   

13.
The effects of exercise conditioning on the myocardium were studied in seven instrumented pigs strenuously exercised for 12 wk by treadmill running. Data were compared with eight instrumented untrained pigs. O2 consumption measured during maximum exercise effort was significantly elevated in the trained pigs (71.7 +/- 4.0 vs. 56.3 +/- 3.0 ml X ml-1 X kg-1). Absolute right and left ventricular mass increased by 20 and 13%, respectively, in response to exercise. Myocyte cross-sectional area increased by 21% in the trained hearts compared with the untrained hearts. Transmural left ventricular myocardial blood flow (ml X min-1 X g-1) was not significantly different at rest, during maximum exercise, or during exercise with adenosine infusion. However, training caused an elevation of the regional epicardial blood flow noted during exercise and exercise with adenosine. In the trained pigs mean aortic pressure during maximum exercise with adenosine infusion was not significantly different compared with untrained pigs. Coronary resistance during exercise with adenosine infusion was the same in both animal groups. In the trained group capillary numerical (no./mm2) and length (mm/mm3) densities were reduced, whereas arteriolar numerical and length densities were significantly increased compared with the untrained group. Measurements of capillary luminal surface density (mm2/mm3) in the trained group were unchanged compared with the untrained group. These results suggest that strenuous exercise does not stimulate the production of new capillaries, but this is modified by the ability of existing capillaries to increase their luminal surface area to parallel increases in myocyte growth. The arteriolar data suggest that exercise promotes the formation of new arterioles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Myocardial infarction (MI) is characterized by ventricular remodeling, hypertrophy of the surviving myocardium, and an insufficient angiogenic response. Thyroxine is a powerful stimulus for myocardial angiogenesis. Male rats that underwent coronary artery ligation and subsequent MI were given 3,5-diiodothyropropionic acid (DITPA; MI+DITPA group) during a 3-wk period. We evaluated ventricular remodeling using echocardiography and histology and myocardial vessel growth using image analysis. Protein expression was assessed using Western blotting and immunohistochemistry. This study tested the hypothesis that the thyroxine analog DITPA facilitates angiogenesis and influences postinfarction remodeling in the surviving hypertrophic myocardium. The increase in the region of akinesis (infarct expansion) was blunted in the MI+DITPA rats compared with the MI group (3 vs. 21%); the treated rats had smaller percent increases in the left ventricular (LV) volume (64 +/- 14 vs. 95 +/- 12) and the LV volume-to-mass ratio (47 +/- 13 vs. 84 +/- 10) as well as a blunted decrease in ejection fraction (-9 +/- 8 vs. -30 +/- 7%). Arteriolar length density was higher after treatment in the largest (>50% of the free wall) infarcts (64 +/- 3 vs. 43 +/- 7). Angiogenic growth factors [vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)] and the angiopoietin receptor tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Tie-2) values were elevated during the first week after infarction. DITPA did not cause additional increases in VEGF or Tie-2 values but did induce an increase in bFGF value after 3 days of treatment. This study provides the first evidence for an anatomical basis, i.e., attenuated ventricular remodeling and arteriolar growth, for improved function attributed to DITPA therapy of the infarcted heart. The favorable influences of DITPA on LV remodeling after large infarction are principally due to border zone preservation.  相似文献   

15.
Recent studies suggest that the therapeutic effects of stem cell transplantation following myocardial infarction (MI) are mediated by paracrine factors. One of the main goals in the treatment of ischemic heart disease is to stimulate vascular repair mechanisms. Here, we sought to explore the therapeutic angiogenic potential of mesenchymal stem cell (MSC) secretions. Human MSC secretions were collected as conditioned medium (MSC-CM) using a clinically compliant protocol. Based on proteomic and pathway analysis of MSC-CM, an in vitro assay of HUVEC spheroids was performed identifying the angiogenic properties of MSC-CM. Subsequently, pigs were subjected to surgical left circumflex coronary artery ligation and randomized to intravenous MSC-CM treatment or non-CM (NCM) treatment for 7 days. Three weeks after MI, myocardial capillary density was higher in pigs treated with MSC-CM (645 ± 114 vs 981 ± 55 capillaries/mm(2); P = 0.021), which was accompanied by reduced myocardial infarct size and preserved systolic and diastolic performance. Intravenous MSC-CM treatment after myocardial infarction increases capillary density and preserves cardiac function, probably by increasing myocardial perfusion.  相似文献   

16.

Rationale

Despite preclinical success in regenerating and revascularizing the infarcted heart using angiogenic growth factors or bone marrow (BM) cells, recent clinical trials have revealed less benefit from these therapies than expected.

Objective

We explored the therapeutic potential of myocardial gene therapy of placental growth factor (PlGF), a VEGF-related angiogenic growth factor, with progenitor-mobilizing activity.

Methods and Results

Myocardial PlGF gene therapy improves cardiac performance after myocardial infarction, by inducing cardiac repair and reparative myoangiogenesis, via upregulation of paracrine anti-apoptotic and angiogenic factors. In addition, PlGF therapy stimulated Sca-1+/Lin (SL) BM progenitor proliferation, enhanced their mobilization into peripheral blood, and promoted their recruitment into the peri-infarct borders. Moreover, PlGF enhanced endothelial progenitor colony formation of BM-derived SL cells, and induced a phenotypic switch of BM-SL cells, recruited in the infarct, to the endothelial, smooth muscle and cardiomyocyte lineage.

Conclusions

Such pleiotropic effects of PlGF on cardiac repair and regeneration offer novel opportunities in the treatment of ischemic heart disease.  相似文献   

17.
alphaB-crystallin is the most abundant low-molecular-weight heat shock protein in heart and recent studies have demonstrated that it plays a cardioprotective role during myocardial infarction both in vivo and in vitro. On the other hand, platelet-derived growth factor (PDGF), a potent serum mitogen, has been reported to improve cardiac function after myocardial infarction. In the present study, using a mouse myocardial infarction model, we investigated whether alphaB-crystallin is phosphorylated during myocardial infarction and the implication of PDGF-BB. Phosphorylation of alphaB-crystallin at Ser-59 was time dependently induced and plasma PDGF-BB levels were concomitantly increased. Moreover, PDGF-BB-stimulated phosphorylation of alphaB-crystallin was suppressed by SB203580, a specific inhibitor of p38 mitogen-activated protein (MAP) kinase, in primary cultured cardiac myocytes. Our results indicate that PDGF-BB induces phosphorylation of alphaB-crystallin via p38 MAP kinase during myocardial infarction.  相似文献   

18.
The purpose of the present investigation was to determine the effects of thyroxine (T4), which induces myocardial hypertrophy, on the number per square millimetre and volume per cubic millimetre of both the total and perfused portions of the arteriolar and capillary beds of the heart. Studies were conducted in the subendocardial and subepicardial regions of the left ventricle of anesthetized open-chest rabbits. Fluorescein isothiocyanate-dextran (i.v.) or radioactive microspheres (intra-atrial) were injected to label the perfused microvessels or to determine coronary flow in three groups of rabbits: controls, and rabbits given 0.5 mg/kg T4 for 3 days and for 16 days. Fluorescent photography was used to identify the perfused microvessels. An alkaline phosphatase stain was employed to locate the total microvascular bed. There were 2369 +/- 638 (SD) capillaries/mm2 and 4 +/- 3 arterioles/mm2 in control hearts. These decreased significantly to 1380 +/- 199/mm2 and 1 +/- 1/mm2, respectively, after 16 days of T4. In controls, 60 +/- 5% of the capillaries and 59 +/- 21% of the arterioles were perfused. This increased significantly to 90 +/- 5 and 86 +/- 18%, respectively, by 16 days of T4 treatment. Similar changes, although smaller, were observed after 3 days of T4. Coronary blood flow increased to 1.7 times control after 3 days and 2.9 times after 16 days of T4. No significant subepicardial versus subendocardial differences were observed in any condition or measurement. Thus, the physiological response to the increased work and increase in anatomic minimum diffusion distance is to increase flow and the proportion of the capillary bed perfused to at least maintain physiological diffusion distances.  相似文献   

19.
BACKGROUND: Acidic fibroblast growth factor (FGF-1) has been identified as a potent mitogen for vascular cells, inducing formation of mature blood vessels in vitro and in vivo and represents one of the most promising approaches for the treatment of ischemic cardiovascular diseases by gene therapy. Nevertheless, and most probably due to the few experimental models able to address the issue, no study has described the therapeutic effects of FGF-1 gene transfer in subjects with peripheral arterial disease (PAD) exhibiting a clinically relevant cardiovascular pathology. METHODS: In order to assess the potency of FGF-1 gene transfer for therapeutic angiogenesis in ischemic skeletal muscles displaying decreased gene expression levels and sustained impaired formation of collateral vessels and arterioles, we developed a model of PAD in hamsters with a background of hypercholesterolemia. Hamsters fed a cholesterol-rich diet and subjected to hindlimb ischemia exhibit a sustained impaired angiogenic response, as evidenced by decreased angiographic score and histological quantification of arterioles in the ischemic muscles. RESULTS: In this model, we demonstrate that NV1FGF (a human FGF-1 expression plasmid), given intramuscularly 14 days after induction of hindlimb ischemia, promoted the formation of both collateral vessels and arterioles 14 days after treatment (i.e. 28 days post-ischemia). CONCLUSIONS: Our data provide evidence that NV1FGF can reverse the cholesterol-induced impairment of revascularization in a hamster model of hindlimb ischemia by promoting the growth of both collateral vessels and arterioles in ischemic muscles exhibiting significantly decreased levels of gene expression compared with control muscles. Therefore, this study underscores the relevance of NV1FGF gene therapy to overcome perfusion defects in patients with PAD.  相似文献   

20.
Summary The methods of therapeutic angiogenesis include endothelial progenitor cell (EPC) mobilization with cytokines [e.g., granulocyte colony-stimulating factor (G-CSF)] and bone marrow mononuclear cell (BMMNC) transplantation. Combined angiogenic therapies may be superior to a single angiogenic therapy for the treatment of limb ischemia. Therefore, we investigated whether the angiogenic efficacy of a combination of two angiogenic strategies is superior to either strategy alone. One day after the surgical induction of hindlimb ischemia, mice were randomized to receive either no treatment, EPC mobilization with G-CSF administration, BMMNC transplantation using a fibrin matrix, or a combination of EPC mobilization with BMMNC transplantation using a fibrin matrix. EPC mobilization with G-CSF or BMMNC transplantation using a fibrin matrix significantly increased the microvessel density compared with no treatment. Importantly, a combination of EPC mobilization with BMMNC transplantation using a fibrin matrix further increased the densities of microvessels and BrdU-positive capillaries compared to either strategy alone. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) expression was higher in the EPC mobilization with G-CSF or BMMNC transplantation group than in the no treatment group. The combination therapy of EPC mobilization with G-CSF and BMMNC transplantation resulted in more extensive expression of bFGF and VEGF than the single therapy of either EPC mobilization with G-CSF treatment or BMMNC transplantation. This study demonstrates that the combination therapy of BMMNC transplantation and EPC mobilization potentiates the angiogenic efficacy of either single therapy in mouse limb ischemia models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号