首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When marine and terrestrial ecological systems are compared at the same time scales, there are very great differences in their relations with their physical environments. Similarities arise when comparisons are made at different time scales. There are significant consequences for management.  相似文献   

2.
Community ecologists have struggled to create unified theories across diverse ecosystems, but it has been difficult to acertain whether marine and terrestrial communities differ in the mechanisms responsible for structure and dynamics. One apparent difference between marine and terrestrial ecology is that the influence of regional processes on local populations and communities is better established in the marine literature. We examine three potential explanations: 1) influential early studies emphasized local interactions in terrestrial communities and regional dispersal in marine communities. 2) regional‐scale processes are actually more important in marine than in terrestrial communities. 3) recruitment from a regional species pool is easier to study in marine than terrestrial communities. We conclude that these are interrelated, but that the second and especially the third explanations are more important than the first. We also conclude that in both marine and terrestrial systems, there are ways to improve our understanding of regional influences on local community diversity. In particular, we advocate examining local vs regional diversity relationships at localities within environmentally similar regions that differ in their diversity either because of their sizes or their varying degrees of isolation from a species source.  相似文献   

3.
Endemism in Hawaiian marine invertebrates is strikingly lower than that in Hawaiian terrestrial organisms. Although marine speciation has been widespread, there have been no major radiations or species swarms comparable with those commonly reported for terrestrial animals and plants; the marine fauna of the Hawaiian islands is differentiated from its Indo-west Pacific roots but has not diversified. The marked differences between marine and terrestrial endemism provide broad support for several models in which speciation depends on dispersal, colonization rate, or effective population size. Distinguishing among these models will require detailed information on the genetic structure and phylogenies of marine species both in the Hawaiian archipelago and throughout the Pacific.  相似文献   

4.
In this paper we will outline several empirical approaches to developing and testing hypotheses about the determinants of species borders. We highlight environmental change as an important opportunity – arguing that these unplanned, large-scale manipulations can be used to study mechanisms which limit species distributions. Our discussion will emphasize three main ideas. First, we review the traditional biogeographic approach. We show how modern analytical and computer techniques have improved this approach and generated important new hypotheses concerning species' range determinants. However, abilities to test those hypotheses continue to be limited. Next we look at how the additions of temporal data, field and lab experimentation, biological details and replication, when applied to systems that have been the subject of classical biogeographic studies, have been used to support or refute hypotheses on range determinants. Such a multi-faceted approach adds rigor, consistency and plausible mechanisms to the study of species ranges, and has been especially fruitful in the study of climate and species' ranges. Lastly, we present an alternative avenue for exploration of range-limiting mechanisms which has been under-utilized. We argue that carefully designed comparisons and contrasts between groups of species or systems provide a powerful tool for examining hypotheses on species' borders. The seasonality hypothesis as an explanation for Rapoport's rule serves as a model of this approach. A test is constructed by comparing patterns of seasonality and range size among marine and terrestrial systems. The seasonality hypothesis is not supported.  相似文献   

5.
Recent research has provided new insight into the physiologyof hibernation in freshwater, marine, and terrestrial turtles.In this paper I review what is known about the mechanisms thatpermit the hearts of these turtles to withstand several monthsof hypoxia or anoxia. I also report new research that indicatesthat a terrestrial turtle, unlike freshwater and marine species,does not experience hypoxia in its winter burrow and thus doesnot rely on glycolysis to supply ATP, at least under moderatewinter conditions.  相似文献   

6.
The marine‐terrestrial richness gradient is among Earth's most dramatic biodiversity patterns, but its causes remain poorly understood. Here, we analyse detailed phylogenies of amniote clades, paleontological data and simulations to reveal the mechanisms underlying low marine richness, emphasising speciation, extinction and colonisation. We show that differences in diversification rates (speciation minus extinction) between habitats are often weak and inconsistent with observed richness patterns. Instead, the richness gradient is explained by limited time for speciation in marine habitats, since all extant marine clades are relatively young. Paleontological data show that older marine invasions have consistently ended in extinction. Simulations show that marine extinctions help drive the pattern of young, depauperate marine clades. This role for extinction is not discernible from molecular phylogenies alone, and not predicted by most previously hypothesised explanations for this gradient. Our results have important implications for the marine‐terrestrial biodiversity gradient, and studies of biodiversity gradients in general.  相似文献   

7.
Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species'' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.  相似文献   

8.
Knowledge of Antarctic biotas and environments has increased dramatically in recent years. There has also been a rapid increase in the use of novel technologies. Despite this, some fundamental aspects of environmental control that structure physiological, ecological and life-history traits in Antarctic organisms have received little attention. Possibly the most important of these is the timing and availability of resources, and the way in which this dictates the tempo or pace of life. The clearest view of this effect comes from comparisons of species living in different habitats. Here, we (i) show that the timing and extent of resource availability, from nutrients to colonisable space, differ across Antarctic marine, intertidal and terrestrial habitats, and (ii) illustrate that these differences affect the rate at which organisms function. Consequently, there are many dramatic biological differences between organisms that live as little as 10 m apart, but have gaping voids between them ecologically.Identifying the effects of environmental timing and predictability requires detailed analysis in a wide context, where Antarctic terrestrial and marine ecosystems are at one extreme of the continuum of available environments for many characteristics including temperature, ice cover and seasonality. Anthropocentrically, Antarctica is harsh and as might be expected terrestrial animal and plant diversity and biomass are restricted. By contrast, Antarctic marine biotas are rich and diverse, and several phyla are represented at levels greater than global averages. There has been much debate on the relative importance of various physical factors that structure the characteristics of Antarctic biotas. This is especially so for temperature and seasonality, and their effects on physiology, life history and biodiversity. More recently, habitat age and persistence through previous ice maxima have been identified as key factors dictating biodiversity and endemism. Modern molecular methods have also recently been incorporated into many traditional areas of polar biology. Environmental predictability dictates many of the biological characters seen in all of these areas of Antarctic research.  相似文献   

9.
Aerobic neutrophilic Fe‐oxidizing bacteria (FeOB) thrive where oxic and iron‐rich anoxic waters meet. Here, iron microbial mats are commonly developed by stalk‐forming Fe‐oxidizers adapted to these iron‐rich gradient environments, somehow avoiding iron encrustation. Few details are known about FeOB physiology; thus, the bases of these adaptations, notably the mechanisms of interactions with iron, are poorly understood. We examined two stalked FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans and a terrestrial Betaproteobacterium Gallionella‐like organism. We used cryo‐transmission electron microscopy and cryo‐electron tomography to provide unprecedented ultrastructural data on intact cell‐mineral systems. Both FeOB localize iron mineral formation at stalk extrusion sites, while avoiding surface and periplasmic mineralization. The M. ferrooxydans cell surface is densely covered in fibrils while the terrestrial FeOB surface is smooth, suggesting a difference in surface chemistry. Only the terrestrial FeOB exhibited a putative chemotaxis apparatus, which may be due to differences in chemotaxis mechanisms. Both FeOB have a single flagellum, which alone is insufficient to account for cell motion during iron oxidation, suggesting that stalk extrusion is a mechanism for motility. Our results delineate the physical framework of iron transformations and characterize possible structural adaptations to the iron‐oxidizing lifestyle. This study shows ultrastructural similarities and differences between two distinct FeOB, setting the stage for further (e.g. genomic) comparisons that will help us understand functional differences and evolutionary history.  相似文献   

10.
James D. Roth 《Oecologia》2002,133(1):70-77
Consumption of marine foods by terrestrial predators can lead to increased predator densities, potentially impacting their terrestrial resources. For arctic foxes (Alopex lagopus), access to such marine foods in winter depends on sea ice, which is threatened by global climate change. To quantify the importance of marine foods (seal carrion and seal pups) and document temporal variation in arctic fox diet I measured the ratios of the stable isotopes of carbon (13C/12C) in hair of arctic foxes near Cape Churchill, Manitoba, from 1994 to 1997. These hair samples were compared to the stable carbon isotope ratios of several prey species. Isotopic differences between seasonally dimorphic pelage types indicated a diet with a greater marine content in winter when sea ice provided access to seal carrion. Annual variation in arctic fox diet in both summer and winter was correlated with lemming abundance. Marine food sources became much more important in winters with low lemming populations, accounting for nearly half of the winter protein intake following a lemming decline. Potential alternative summer foods with isotopic signatures differing from lemmings included goose eggs and caribou, but these were unavailable in winter. Reliance on marine food sources in winter during periods of low lemming density demonstrates the importance of the sea ice as a potential habitat for this arctic fox population and suggests that a continued decline in sea ice extent will disrupt an important link between the marine and terrestrial ecosystems.  相似文献   

11.
Carrion consumption by scavengers is a key component of both terrestrial and aquatic food webs. However, there are few direct comparisons of the structure and functioning of scavenging communities in different ecosystems. Here, we monitored the consumption of 23 fish (seabream Sparus aurata) and 34 bird (yellow-legged gull Larus michahellis) carcasses on a small Mediterranean island (Isla Grosa, southeastern Spain) and surrounding waters in summer to compare the structure of the scavenger assemblages and their carrion consumption efficiencies in terrestrial and shallow water habitats. Scavenging was highly efficient both in marine and terrestrial environments, especially in the presence of a highly abundant vertebrate scavenger species, the yellow-legged gull. The vertebrate scavenger community was richer in the marine environment, whereas the invertebrate community was richer on land. The scavenger network was usually well-structured (i.e., nested), with the exception of the community associated with fish terrestrial carcasses, which were almost monopolized by yellow-legged gulls. In contrast, gulls left conspecific carcasses untouched, thus allowing longer persistence of gull carcasses on land and their exploitation by a diverse insect community. Our study shows important differences in the scavenging process associated with environment and carcass type. Promising avenues for further eco-evolutionary and applied research arise from the comparison of scavenging processes in terrestrial and marine ecosystems, from small islands to continents.  相似文献   

12.
Genes of the major histocompatibility complex (MHC) are highly polymorphic in most terrestrial mammal populations so far studied. Exceptions to this are typically populations that lack genome-wide diversity. Here I show that two populations of the southern elephant seal (Mirounga leonina) have low DNA restriction fragment length polymorphism at MHC loci when compared with terrestrial mammals. Limited studies on MHC polymorphism in two cetacean species suggest this is a feature of marine mammal populations in general. MHC polymorphism is thought to be maintained by balancing selection, and several types of disease-based and reproductive-based mechanisms have been proposed. For the three marine mammal species examined, the low MHC polymorphism cannot be explained by low genome-wide diversity, or by any reproductive-based selection pressure. It can, however, be explained by diminished exposure to pathogenic selection pressure compared with terrestrial mammals. Reduced exposure to pathogens would also mean that marine mammal populations may be susceptible to occasional pathogen-induced mass mortalities.  相似文献   

13.
Considering their abundance and broad distribution, non-extremophilic Crenarchaeota are likely to play important roles in global organic and inorganic matter cycles. The diversity and abundance of archaeal 16S rRNA and putative ammonia monooxygenase alpha-subunit (amoA) genes were comparatively analyzed to study genetic potential for nitrification of ammonia-oxidizing archaea (AOA) in the surface layers (0-1 cm) of four marine sediments of the East Sea, Korea. After analysis of a 16S rRNA gene clone library, we found various archaeal groups that include the crenarchaeotal group (CG) I.1a (54.8%) and CG I.1b (5.8%), both of which are known to harbor ammonia oxidizers. Notably, the 16S rRNA gene of CG I.1b has only previously been observed in terrestrial environments. The 16S rRNA gene sequence data revealed a distinct difference in archaeal community among sites of marine sediments. Most of the obtained amoA sequences were not closely related to those of the clones retrieved from estuarine sediments and marine water columns. Furthermore, clades of unique amoA sequences were likely to cluster according to sampling sites. Using real-time PCR, quantitative analysis of amoA copy numbers showed that the copy numbers of archaeal amoA ranged from 1.1 x 10(7) to 4.9 x 10(7) per gram of sediment and were more numerous than those of bacterial amoA, with ratios ranging from 11 to 28. In conclusion, diverse CG I.1a and CG I.1b AOA inhabit surface layers of marine sediments and AOA, and especially, CG I.1a are more numerous than other ammonia-oxidizing bacteria.  相似文献   

14.
We discuss the potential and limitations of the metapopulation concept in marine ecology. The usefulness of the concept in terrestrial ecology is neither based on its simplicity or generality nor on overwhelming empirical evidence. The usefulness is in the questions which are asked when the metapopulation concept is applied. These questions address spatial phenomena and processes on different spatial scales. They help in acknowledging that every population, be it terrestrial or marine, has a spatial organization. Understanding this spatial organization is also important for tackling specific applied problems, i.e. to avoid overexploitation of living marine resources or for configuring marine reserves. The 'openness' of coastal populations, whose larvae enter larval pools or which are holoplanktonic, is no reason for not asking the questions implied by the metapopulation concept. For marine ecology, the real problem is to delineate populations, which then may possibly correspond to the 'local populations' of metapopulations. Thus, the answer to the question in the title of this paper, whether 'marine metapopulation' is a useful concept, is 'yes', if the concept is considered a working hypotheses, if the concept is explicitly defined, and if the questions linked to the concept are clearly stated. Even if it eventually transpires that only very few marine metapopulations actually exist, marine ecology would still have gained some important new insights. Electronic Publication  相似文献   

15.
Despite some fundamental differences in production processes and the ecology of consumer species on land and in the sea, further understanding of pattern and process in both biomes might be gained by applying common methods of macroecological analysis. We develop methods that reconcile apparent differences in abundance and occupancy for marine and terrestrial vertebrates, as exemplified by fish and birds. These recognize and take account of those aspects of the life history and ecology of marine and terrestrial animals that influence their abundance, distribution and trophic role. When abundance and occupancy are averaged within species over time we show that variation within a region is less for birds than fish, but when abundance and occupancy are averaged over space, the difference between birds and fish disappears. Further, we develop size rather than species‐structured abundance–occupancy relationships for fish assemblages and demonstrate that patterns of intra‐size class variation that are very similar to intraspecific variation in bird species, over both time and space. We argue that this result reflects the relative importance of body size and species identity respectively in determining trophic roles in marine and terrestrial environments. Selection of the appropriate analytical unit on land (species) and in the sea (size) helps to reconcile apparently divergent macroecological patterns, especially when these are driven by contrasting patterns of energy acquisition and use.  相似文献   

16.
Summary Nest predation has been considered an important factor in the evolution of avian life histories: smaller clutches and shorter incubation and nestling periods are expected where nest predation has significant effects on reproductive success. Unlike the Australian avifauna, terrestrial New Zealand birds have evolved in the absence of reptilian and mammalian predators. Here we compare the reproductive strategies of terrestrial native New Zealand birds with those of their Australian sister taxa. In 11 of 14 comparisons, New Zealand birds were larger than their Australian relatives, but we did not find any significant differences in reproductive tactics between the two regions, a result inconsistent with the nest predation hypothesis. We discuss several reasons why this may be so. One possibility is that selection imposed on avian life history tactics by mammalian predators following the arrival of humans in New Zealand has led to strategies similar to those adopted in Australia.  相似文献   

17.
黄海海域海洋沉积物细菌多样性分析   总被引:2,自引:1,他引:1  
【背景】海洋独特的环境造就了海洋生物的多样性,海洋沉积物中细菌对海洋环境具有至关重要的作用。【目的】研究陆地土壤和海洋沉积物间细菌群落相似性和差异性,以便更好地认识海洋细菌多样性,深入了解沉积物细菌在海洋环境中的潜在作用。【方法】从中国黄海海域及大连市大黑山脚下分别采集样品,以陆地土壤为对照,采用16SrRNA基因高通量测序技术分析海洋沉积物的细菌群落结构。【结果】海洋沉积物样品中芽孢杆菌纲(Bacilli)、鞘氨醇单胞菌属(Sphingomonas)和芽孢杆菌属(Bacillus)丰度高于陆地土壤样品;海洋沉积物中亚硝化单胞菌(unculturedbacterium f. Nitrosomonadaceae)和厌氧绳菌(uncultured bacterium f. Anaerolineaceae)丰度虽低于陆地土壤,但丰度值也均高于1%;样品分类学统计显示酸杆菌门(Acidobacteria)在海洋沉积物和陆地土壤样品中的序列丰度比例都较大,鞘氨醇单胞菌属(Sphingomonas)在海洋沉积物样品中的序列丰度大于陆地土壤样品。【结论】海洋沉积物细菌多样性可作为海洋环境恢复情况的重...  相似文献   

18.
We present bone collagen amino acid (AA) δ(13)C values for a range of archaeological samples representing four "benchmark" human diet groups (high marine protein consumers, high freshwater protein consumers, terrestrial C(3) consumers, and terrestrial C(4) consumers), a human population with an "unknown" diet, and ruminants. The aim is to establish an interpretive palaeodietary framework for bone collagen AA δ(13)C values, and to assess the extent to which AA δ(13)C values can provide additional dietary information to bulk collagen stable isotope analysis. Results are analyzed to determine the ability of those AAs for which we have a complete set, to discriminate between the diet groups. We show that very strong statistical discrimination is obtained for all interdiet group comparisons. This is often obvious from suitably chosen bivariate plots using δ(113)C values that have been normalized to compensate for interdiet group differences in bulk δ(13)C values. Bi-plots of non-normalized phenylalanine and valine δ(13)C values are useful for distinguishing aquatic diets (marine and freshwater) from terrestrial diets. Our interpretive framework uses multivariate statistics (e.g., discriminant analysis) to optimize the separation of the AA δ(13)C values of the "benchmark"' diet groups, and is capable of accurately assigning external samples to their expected diet groups. With a growing body of AA δ(13)C values, this method is likely to enhance palaeodietary research by allowing the "unknown" diets of populations under investigation to be statistically defined relative to the well-characterized or "known" diets of previously investigated populations.  相似文献   

19.
Basal metabolic rate (BMR) is closely linked to different habitats and way of life. In birds, some studies have noted that BMR is higher in marine species compared to those inhabiting terrestrial habitats. However, the extent of such metabolic dichotomy and its underlying mechanisms are largely unknown. Migratory shorebirds (Charadriiformes) offer a particularly interesting opportunity for testing this marine-non-marine difference as they are typically divided into two broad categories in terms of their habitat occupancy outside the breeding season: 'coastal' and 'inland' shorebirds. Here, we measured BMR for 12 species of migratory shorebirds wintering in temperate inland habitats and collected additional BMR values from the literature for coastal and inland shorebirds along their migratory route to make inter- and intraspecific comparisons. We also measured the BMR of inland and coastal dunlins Calidris alpina wintering at a similar latitude to facilitate a more direct intraspecific comparison. Our interspecific analyses showed that BMR was significantly lower in inland shorebirds than in coastal shorebirds after the effects of potentially confounding climatic (latitude, temperature, solar radiation, wind conditions) and organismal (body mass, migratory status, phylogeny) factors were accounted for. This indicates that part of the variation in basal metabolism might be attributed to genotypic divergence. Intraspecific comparisons showed that the mass-specific BMR of dunlins wintering in inland freshwater habitats was 15% lower than in coastal saline habitats, suggesting that phenotypic plasticity also plays an important role in generating these metabolic differences. We propose that the absence of tidally-induced food restrictions, low salinity, and less windy microclimates associated with inland freshwater habitats may reduce the levels of energy expenditure, and hence BMR. Further research including common-garden experiments that eliminate phenotypic plasticity as a source of phenotypic variation is needed to determine to what extent these general patterns are attributable to genotypic adaptation.  相似文献   

20.
Aim Species distribution models (SDMs) have been used to address a wide range of theoretical and applied questions in the terrestrial realm, but marine‐based applications remain relatively scarce. In this review, we consider how conceptual and practical issues associated with terrestrial SDMs apply to a range of marine organisms and highlight the challenges relevant to improving marine SDMs. Location We include studies from both marine and terrestrial systems that encompass many geographic locations around the globe. Methods We first performed a literature search and analysis of marine and terrestrial SDMs in ISI Web of Science to assess trends and applications. Using knowledge from terrestrial applications, we critically evaluate the application of SDMs in marine systems in the context of ecological factors (dispersal, species interactions, aggregation and ontogenetic shifts) and practical considerations (data quality, alternative modelling approaches and model validation) that facilitate or create difficulties for model application. Results The relative importance of ecological factors to be considered when applying SDMs varies among terrestrial and marine organisms. Correctly incorporating dispersal is frequently considered an important issue for terrestrial models, but because there is greater potential for dispersal in the ocean, it is often less of a concern in marine SDMs. By contrast, ontogenetic shifts and feeding have received little attention in terrestrial SDM applications, but these factors are important to many marine SDMs. Opportunities also exist for applying more advanced SDM approaches in the marine realm, including mechanistic ecophysiological models, where water balance and heat transfer equations are simpler for some marine organisms relative to their terrestrial counterparts. Main conclusions SDMs have generally been under‐utilized in the marine realm relative to terrestrial applications. Correlative SDM methods should be tested on a range of marine organisms, and we suggest further development of methods that address ontogenetic shifts and feeding interactions. We anticipate developments in, and cross‐fertilization between, coupled correlative and process‐based SDMs, mechanistic eco‐physiological SDMs, and spatial population dynamic models for climate change and species invasion applications in particular. Comparisons of the outputs of different model types will provide insight that is useful for improved spatial management of marine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号