首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The pigment epithelium-derived factor (PEDF), a secreted 50 kDa glycoprotein, is one of the most potent endogenous inhibitors of angiogenesis. The fragment 44–77 of PEDF possesses the antiangiogenic properties of the full-sized protein and is a potential drug candidate for the treatment of diseases of visual organs accompanied by pathological neovascularization. An effective biotechnological method for the large-scale production of the PEDF (44–77) fragment as part of the fusion protein with the SspDnaB intein has been developed. The hybrid protein was produced in Escherichia coli bacterial cells in the form of inclusion bodies, solubilized, and subjected to autocatalytic cleavage with the release of the PEDF (44–77) fragment (reaction yield 77%). The target peptide was separated from the intein by tangential ultrafiltration. The final purification of PEDF (44–77) was performed by reversed-phase HPLC. The yield of the target peptide (purity 99%) was 65 mg per 1 l of culture. The antiangiogenic activity of the peptide was confirmed in vitro using mouse endothelial cells SVEC-4-10. It was found that the preparation at a concentration of 1 nM suppresses the proliferation of endothelial cells by 53% and inhibits the formation of tube-like structures by endothelial cells. The ability of the recombinant PEDF (44–77) to block the initial stages of angiogenesis was shown using an experimental model of rabbit corneal neovascularization.  相似文献   

2.
Human pigment epithelium-derived factor (PEDF), a neurotrophic factor, is the most potent natural inhibitor of angiogenesis. To produce the active PEDF, the gene coding for the human PEDF protein was expressed in E. coli. The rPEDF protein was expressed at 457 mg l–1 as a soluble protein. The yield of purified GST fusion protein was 14 mg ll–1. Purified rPEDF inhibited tube formation in endothelial cells.Revisions requested 30 November 2004; Revisions received 25 January 2005  相似文献   

3.
Pigment epithelium-derived factor (PEDF) has neuronal differentiation and survival activity on retinoblastoma and cerebellar granule (CG) cells. Here, we investigated the presence of PEDF receptors on retinoblastoma Y-79 and CG cells. PEDF radiolabeled with (l25)I remained biologically active and was used for radioligand binding analysis. The binding was saturable and specific to a single class of receptors on both cells and with similar affinities (K(d) = 1.7-3.6 nM, B(max) = 0.5-2.7 x 10(5) sites/Y-79 cell; and K(d) = 3.2 nM, B(max) = 1.1 x 10(3) sites/CG cell). A polyclonal antiserum to PEDF, previously shown to block the PEDF neurotrophic activity, prevented the (125)I-PEDF binding. We designed two peptides from a region previously shown to confer the neurotrophic property to human PEDF, synthetic peptides 34-mer (positions 44-77) and 44-mer (positions 78-121). Only peptide 44-mer competed for the binding to Y-79 cell receptors (EC(50) = 5 nM) and exhibited neuronal differentiating activity. PEDF affinity column chromatography of membrane proteins from both cell types revealed a PEDF-binding protein of approximately 80 kDa. These results are the first demonstration of a PEDF-binding protein with characteristics of a PEDF receptor and suggest that the region comprising amino acid positions 78-121 of PEDF might be involved in ligand-receptor interactions.  相似文献   

4.
In this work, the intein fusion approach was used for expression and purification of cathelicidin-like peptide SMAP-29 from Escherichia coli cultures. To overcome the high toxicity of the antimicrobial peptide against host cells, both C- and N-terminal fusions with Sce VMA intein were evaluated. The fusion of SMAP-29 with the N-terminus of intein had a dramatic lethal effect. In contrast, chimeric constructs harboring SMAP-29 linked to the C-terminus of intein displayed no significant inhibition of bacterial growth. Expression of intein-SMAP fusion protein was then induced in ER2566 E. coli strain by IPTG addition and different experimental conditions were tested in order to optimize the recovery of the soluble protein complex. Peptide purification was carried out by affinity chromatography: the chitin binding domain linked to intein was used to immobilize the chimeric protein on a chitin column and intein-mediated splicing of target peptide was obtained by thiol addition. Microbroth dilution assay showed that recombinant SMAP-29 displayed a high, dose-dependent bactericidal activity. These data demonstrate that the fusion of SMAP-29 with C-intein was able to inactivate the antimicrobial properties of the cathelicidin peptide allowing the expression of fusion protein in the host cell. The intein-mediated purification supplied an effective way to recover the fusion partner in its proper biologically active form.  相似文献   

5.
Zhang A  Gonzalez SM  Cantor EJ  Chong S 《Gene》2001,275(2):241-252
Affinity purification of recombinant proteins has been facilitated by fusion to a modified protein splicing element (intein). The fusion protein expression can be further improved by fusion to a mini-intein, i.e. an intein that lacks an endonuclease domain. We synthesized three mini-inteins using overlapping oligonucleotides to incorporate Escherichia coli optimized codons and allow convenient insertion of an affinity tag between the intein (predicted) N- and C-terminal fragments. After examining the splicing and cleavage activities of the synthesized mini-inteins, we chose the mini-intein most efficient in thiol-induced N-terminal cleavage for constructing a novel intein fusion system. In this system, green fluorescent protein (GFP) was fused to the C-terminus of the affinity-tagged mini-intein whose N-terminus was fused to a target protein. The design of the system allowed easy monitoring of soluble fusion protein expression by following GFP fluorescence, and rapid purification of the target protein through the intein-mediated cleavage reaction. A total of 17 target proteins were tested in this intein-GFP fusion system. Our data demonstrated that the fluorescence of the induced cells could be used to measure soluble expression of the intein fusion proteins and efficient intein cleavage activity. The final yield of the target proteins exhibited a linear relationship with whole cell fluorescence. The intein-GFP system may provide a simple route for monitoring real time soluble protein expression, predicting final product yields, and screening the expression of a large number of recombinant proteins for rapid purification in high throughput applications.  相似文献   

6.
PEDF34, a functional epitope of pigment epithelium-derived factor (PEDF), obtained by chemical synthesis previously, shows potential anti-angiogenesis activity described before. We perform a novel method in this study for the expression and purification of recombinant PEDF34 in E. coli, and make it convenient, soluble and high yield to obtain this small peptide of PEDF. Human PEDF34 gene was cloned into the fusion-protein expression vector pGEX-4T-1, and the recombinant plasmid was transformed into E. coli strain BL21-DE3. GST-PEDF34 fusion protein was expressed, purified using chromatograph and identified by Western blotting. The purified fusion protein was digested by thrombin, and the small PEDF34 peptide was isolated by ultrafiltration. Circular dichroism (CD) analysis identified that secondary structure of PEDF34 mainly characterizes as α-helix. The 34-AA small peptide could cell-type-specifically inhibit viability of HUVECs in a dose-dependent manner and induce apoptosis of HUVECs. These results suggested that this type of recombinant PEDF34 may have potential in the treatment of angiogenesis-related diseases such as solid tumor.  相似文献   

7.
为了实现蛋白内含肽(Intein)介导的重组环状胸腺五肽结构类似物[cyclo-(Cys -Arg-Lys –Asp-Val-Tyr),cTP]的高效制备,设计并合成编码6个氨基酸的cTP基因,克隆到表达载体pTWIN1,重组表达质粒pTW-cTp转化E.coli ER2566构建工程菌,IPTG诱导由几丁质结合域纯化标签(chitin binding domain,CBD)、2个蛋白内含肽和目的多肽组成的“多元”融合蛋白(CBD-intein1-cTP-intein2-CBD)的高效表达.几丁质柱亲合层析纯化融合蛋白后,改变pH值和温度诱导intein1 C端切割,硫醇MESNA诱导intein2 N端切割,释放N端为Cys,C端为硫酯的重组cTP线性前体,通过非保护多肽硫酯环合法实现环肽生成.激光飞行质谱结果显示,纯化产物的分子量为764.4,与环肽的理论值相符.免疫活性检测结果显示,环肽cTP较线性多肽TP-5具有更显著的促进巨噬细胞吞噬能力的活性(P<0.01)和促进B细胞抗体生成的活性(P<0.01).  相似文献   

8.
Tumstatin, a cleavage fragment of collagen IV, is a potent endogenous inhibitor of angiogenesis. Tumstatin-derived peptide T8 possesses all angiostatic properties of full-length tumstatin and indirectly suppresses tumor growth. The potential of T8 to block pathological angiogenesis in the eye has not been explored yet. Here we assess antiangiogenic effects of a recombinant T8 peptide in rabbit corneal neovascularization models. The fusion protein consisting of T8 and thioredoxin was synthesized in a highly efficient Escherichia coli expression system, isolated using ion-exchange chromatography and cleaved with TEV (tobacco etch virus) protease. The target peptide was purified on an anion-exchange resin and by reversed phase high-performance liquid chromatography. The recombinant peptide suppressed the proliferation of basic fibroblast growth factor-induced SVEC-4-10 endothelial cells (simian virus 40-immortalized murine endothelial cells) and inhibited tube formation in these cells in a dose-dependent manner. In rabbit corneal neovascularization models T8 demonstrated the ability to prevent pathological angiogenesis (when injected simultaneously with the induction of neovascularization) and, moreover, to promote the regression of newly-formed blood vessels (when injected on day 8 after angiogenesis stimulation). Our results suggest that T8 may have a therapeutic potential in the treatment of ocular neovascular diseases.  相似文献   

9.
Poly(ADP-ribose)polymerase (PARP) inhibitors decrease angiogenesis through reducing vascular endothelium growth factor (VEGF) induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). In contrast to VEGF, pigment epithelium-derived factor (PEDF) has been demonstrated to act as a strong endogenous inhibitor of angiogenesis. Here, we show that PARP inhibition with a specific inhibitor PJ-34 or specific PARP antisense oligonucleotide upregulates hyperglycemia-induced PEDF expression in HUVECs in a dose-dependent manner. This results in the retard of activation of p38 MAP kinase and the concomitant decrease in cell apoptosis. These results give the first direct demonstration that PEDF might represent a target for PARP inhibition treatment and the effects of PEDF on endothelial cells growth are context dependent.  相似文献   

10.
Intein-mediated protein ligation is a recently developed method that enables the C-terminal labeling of proteins. This technique requires a correctly folded intein mutant that is fused to the C-terminus of a target protein to create a thioester, which allows the ligation of a peptide with an N-terminal cysteine (1, 2). Here we describe the establishment of this method for the labeling, under denaturing conditions, of target proteins that are expressed insolubly as intein fusion proteins. A GFPuv fusion protein with the Mycobacterium xenopi gyrA intein was expressed in inclusion bodies in Escherichia coli and initially used as a model protein to verify intein cleavage activity under different refolding conditions. The intein showed activity after refolding in nondenaturing and slightly denaturing conditions. A construct of the same intein with an anti-neutravidin single-chain antibody was also expressed in an insoluble form. The intein-mediated ligation was established for this single chain antibody-intein fusion protein under denaturing conditions in 4 M urea to prevent significant precipitation of the fusion protein during the first refolding step. Under optimized conditions, the single-chain antibody was labeled with a fluorescent peptide and used for antigen screening on a biochip after final refolding. This screening procedure allowed the determination of binding characteristics of the scFv for avidin proteins in a miniaturized format.  相似文献   

11.
12.
《Gene》1997,192(2):271-281
A novel protein purification system has been developed which enables purification of free recombinant proteins in a single chromatographic step. The system utilizes a modified protein splicing element (intein) from Saccharomyces cerevisiae (Sce VMA intein) in conjunction with a chitin-binding domain (CBD) from Bacillus circulans as an affinity tag. The concept is based on the observation that the modified Sce VMA intein can be induced to undergo a self-cleavage reaction at its N-terminal peptide linkage by 1,4-dithiothreitol (DTT), β-mercaptoethanol (β-ME) or cysteine at low temperatures and over a broad pH range. A target protein is cloned in-frame with the N-terminus of the intein-CBD fusion, and the stable fusion protein is purified by adsorption onto a chitin column. The immobilized fusion protein is then induced to undergo self-cleavage under mild conditions, resulting in the release of the target protein while the intein-CBD fusion remains bound to the column. No exogenous proteolytic cleavage is needed. Furthermore, using this procedure, the purified free target protein can be specifically labeled at its C-terminus.  相似文献   

13.
Intein-mediated rapid purification of Cre recombinase   总被引:1,自引:0,他引:1  
Cre recombinase produced by bacteriophage P1 catalyzes site-specific recombination of DNA between loxP recognition sites in both prokaryotic and eukaryotic cells and has been widely used for genome engineering and in vitro cloning. Recombinant Cre has been overproduced in Escherichia coli and its purification involves multiple steps. In this report, we used an "intein" fusion system to express Cre as a C-terminal fusion to a modified protein splicing element, i.e., intein. The modified intein contained a Bacillus circulans chitin-binding domain which allowed binding of the fusion protein on a chitin column and could be induced to undergo in vitro peptide bond cleavage which specifically released Cre from the column. Using the intein system, we have obtained highly pure nontagged Cre after just a single chromatographic step, which corresponded to approximately 80% recovery and 27-fold purification. The activity of the purified Cre was determined in an in vitro assay system and was found to remain stable over a period of more than 6 months.  相似文献   

14.
Recombinant protein expression and purification remains a central need for biotechnology. Herein, the authors report a streamlined protein and peptide purification strategy using short self‐assembling peptides and a C‐terminal cleavage intein. In this strategy, the fusion protein is first expressed as an aggregate induced by the self‐assembling peptide. Upon simple separation, the target protein or peptide with an authentic N‐terminus is then released in the solution by intein‐mediated cleavage. Different combinations of four self‐assembling peptides (ELK16, L6KD, FK and FR) with three inteins (Sce VMA, Mtu ΔI‐CM and Ssp DnaB) were explored. One protein and two peptides were used as model polypeptides to test the strategy. The intein Mtu ΔI‐CM, which has pH‐shift inducible cleavage, was found to work well with three self‐assembling peptides (L6KD, FR, FK). Using this intein gave a yield of protein or peptide comparable with that from other more established strategies, such as the Trx‐strategy, but in a simpler and more economical way. This strategy provides a simple and efficient method by which to prepare proteins and peptides with an authentic N‐terminus, which is especially effective for peptides of 30‐100 amino acids in length that are typically unstable and susceptible to degradation in Escherichia coli.  相似文献   

15.
Pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis in the mammalian eye, thus suggesting that loss of PEDF is involved in angiogenic eye diseases such as proliferative diabetic retinopathy. Angiogenesis is required for tumor growth and progression as well. We, along with others, have recently found that PEDF could inhibit growth of melanoma and hepatocellular carcinoma in nude mice through its anti-angiogenic effects on tumor endothelial cells. However, the possibility of the direct effect of PEDF on tumor cells has remained. In this study, we investigated the effects of PEDF on growth and vascular endothelial growth factor (VEGF) expression in MG63 human cultured osteosarcoma cells. PEDF decreased viable cell number as well as DNA synthesis in MG63 cells in a dose-dependent manner. Furthermore, PEDF was found to increase caspase-3/7 activity and to subsequently induce apoptotic cell death in MG63 cells. PEDF also inhibited VEGF expression in MG63 cells at both mRNA and protein levels. Our present study provides novel beneficial aspects of PEDF on osteosarcoma cells; one is induction of apoptotic cell death of tumor cells, and the other is the suppression of VEGF expression, which would lead to inhibition of tumor angiogenesis. PEDF therefore might be a promising therapeutic agent for treatment of patients with osteosarcoma.  相似文献   

16.
Yu RJ  Xie QL  Dai Y  Gao Y  Zhou TH  Hong A 《Peptides》2006,27(6):1359-1366
In order to obtain the recombinant VPAC2 agonist efficiently by intein-mediated single column purification, a gene encoding 32-amino acids peptide was designed, synthesized and cloned into Escherichia coli expression vector pKYB. The recombinant vector pKY-ROM was transferred into E. coli ER2566 cells and the target protein was over-expressed as a fusion to the N-terminus of a self-cleavable affinity tag. After the rMROM-intein-CBD fusion protein was purified by chitin-affinity chromatography, the self-cleavage activity of the intein was induced by beta-mercaptoethanol and the rMROM with the homogeneity over 95% was released from the chitin-bound intein tag. The recombinant linear rMROM competitively displaced [125I] PACAP38 on VPAC2 with a half-maximal inhibitory concentration (IC50) of 60 +/- 5 nM, whereas the IC50 of rMROM at human VPAC1 was observed up to 10 microM and no binding was detected at PAC1. rMROM stimulated the cAMP accumulation in Chinese hamster ovary (CHO) cells expressing the human VPAC2 with a half-maximal stimulatory concentration (EC50) of 0.6 nM, which was 500-fold less potent at VPAC1and had no activity on PAC1. An efficient production procedure of a novel recombinant VPAC2-selective agonist was established.  相似文献   

17.
We engineered a fusion protein, mrIL-12vp [mouse recombinant interleukin (IL)-12 linked to vascular peptide], linking the vascular homing peptide CDCRGDCFC (RGD-4C), a ligand for alphavbeta3 integrin, to mrIL-12 to target IL-12 directly to tumor neovasculature. The fusion protein stimulated IFN-gamma production in vitro and in vivo, indicating its biological activity was consistent with mrIL-12. Immunofluorescence techniques showed mrIL-12vp specifically bound to alphavbeta3 integrin-positive cells but not to alphavbeta3 integrin-negative cells. In corneal angiogenesis assays using BALB/c mice treated with either 0.5 microg/mouse/d of mrIL-12vp or mrIL-12 delivered by subcutaneous continuous infusion, mrIL-12vp inhibited corneal neovascularization by 67% compared with only a slight reduction (13%) in angiogenesis in the mrIL-12-treated animals (P = 0.008). IL-12 receptor knockout mice given mrIL-12vp showed a marked decrease in the area of corneal neovascularization compared with mice treated with mrIL-12. These results indicate that mrIL-12vp inhibits angiogenesis through IL-12-dependent and IL-12-independent mechanisms, and its augmented antiangiogenic activity may be due to suppression of endothelial cell signaling pathways by the RGD-4C portion of the fusion protein. Mice injected with NXS2 neuroblastoma cells and treated with mrIL-12vp showed significant suppression of tumor growth compared with mice treated with mrIL-12 (P = 0.03). Mice did not show signs of IL-12 toxicity when treated with mrIL-12vp, although hepatic necrosis was present in mrIL-12-treated mice. Localization of IL-12 to neovasculature significantly enhances the antiangiogenic effect, augments antitumor activity, and decreases toxicity of IL-12, offering a promising strategy for expanding development of IL-12 for treatment of cancer patients.  相似文献   

18.
We previously demonstrated that differentiated retinal pigment epithelial (RPE) cells express high levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), and a critical balance between VEGF and PEDF is important to prevent the development of choroidal neovascularization. We report here that VEGF secreted by RPE cells upregulates PEDF expression via VEGFR-1 in an autocrine manner. PEDF mRNA and protein expression was downregulated by neutralizing antibody against VEGF in differentiated human RPE cells. VEGFR-1 neutralization decreased PEDF mRNA and protein expression whereas anti-VEGFR-2 antibody had no effect. Addition of placenta growth factor (PlGF) restored PEDF expression in the presence of anti-VEGF antibody. These results demonstrate a regulatory interaction between angiogenesis stimulators and inhibitors to maintain homeostasis in normal human retina.  相似文献   

19.
Cardiac diseases such as myocardial infarction and heart failure are among the leading causes of death in western societies. Therapeutic angiogenesis has been suggested as a concept to combat these diseases. The biology of angiogenic factors expressed in the heart such as vascular endothelial growth factor (VEGF) is well studied, whereas data on anti-angiogenic mediators in the heart are scarce. Here we study the expression of the anti-angiogenic factor pigment epithelium-derived factor (PEDF) in the human heart and in human cardiac cells. PEDF expression could be detected in human cardiac tissue on the protein and mRNA levels. PEDF mRNA levels were significantly lower in explanted human ischemic hearts as compared to healthy hearts. Our in vitro experiments showed that human adult cardiac myocytes and fibroblasts constitutively secrete PEDF. In addition to anoxic conditions, cobalt chloride, 2,2'dipyridyl and dimethoxally glycine, which stabilize hypoxia inducible factor-α decreased PEDF expression. Furthermore we show that PEDF inhibits VEGF-induced sprouting. We have identified PEDF in healthy and ischemic human hearts and we show that PEDF expression is down-regulated by low oxygen levels. Therefore, we suggest a role for PEDF in the regulation of angiogenesis in the heart and propose PEDF as a possible therapeutic target in heart disease.  相似文献   

20.
Normal placental vascular development depends upon the complex interactions between angiogenic inducers and inhibitors within the placenta. Alterations within the placental microenvironment can promote an imbalance in angiogenic mediators which may be associated with adverse perinatal outcomes. The purpose of this study was to investigate the placentas of infants with unexplained stillbirth as compared to live-born infants and to determine whether alterations in angiogenic inducer vascular endothelial growth factor (VEGF) or inhibitor pigment epithelium-derived factor (PEDF) are associated with altered angiogenesis, vascular remodeling and stillbirth. Placentas of 22 unexplained stillbirths and 44 age-matched live-born controls were scored for microvascular density (MVD), vasculopathy and microvascular permeability. A subset was scored for expression of angiogenic inducer VEGF and inhibitor pigment epithelium-derived factor. Stillborn placentas demonstrated higher MVD than controls (mean+SD: 116.6+/-46.3 v. 60.8+/-13.5, respectively, p<0.001). Vasculopathy was present in 10/22 (45%) stillbirths compared to 0/44 (0%) controls (p<0.001); increased vascular permeability was present in 15/22 (68%) cases and 5/44 (11%) controls (p<0.001). PEDF expression was significantly lower in stillborn placentas (1.7+/-0.3) than live-born controls (3.6+/-0.8, p<0.01) while VEGF expression was similar (3.3+/-0.7 v. 3.7+/-0.4, respectively, p>0.05). In conclusion, we found that unexplained stillbirth is associated with loss of angiogenic inhibitor PEDF, vasculopathy and heightened angiogenesis in the placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号