首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task.

Methodology/Principal Findings

Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial.

Conclusions/Significance

The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.  相似文献   

2.
A Ceci  E D French 《Life sciences》1989,45(7):637-646
The nucleus accumbens and medial prefrontal cortex contain high concentrations of phencyclidine (PCP) binding sites as well as supply inhibitory and excitatory inputs to the ventral tegmental area (VTA). Thus these two regions could be instrumental in mediating the unique bimodal response of A10 neurons to systemically administered PCP. Therefore we evaluated electrophysiologically the effects of lesions of these two areas on this pattern of response. In sham-lesioned controls, i.v. injections of PCP elicited a typical dose-dependent bimodal effect which was characterized by an activation of A10 firing at low dose (reaching a maximum of +44% at 1 mg/kg) followed by a slowing of this response with larger doses. However, in animals with kainic acid or radiofrequency lesions of the nucleus accumbens, PCP produced only a unimodal response resulting in sustained and elevated (+88% in kainate and +55% in radiofrequency lesioned groups) firing rates. Notably, neither basal activity nor the degree of activation of the A10's at doses of PCP less than 1 mg/kg were affected by the lesions. In contrast, excitotoxic destruction of the medial prefrontal cortex had no effect on the response of A10 neurons to PCP even though basal activity was slightly elevated in this group. These results suggest that the inhibitory component of the bimodal response of VTA neurons to systemic PCP is mediated via feedback pathways from the nucleus accumbens, but that the mesocortical prefrontal cortex does not appear to modulate any portion of this bimodal response.  相似文献   

3.
Antzoulatos EG  Miller EK 《Neuron》2011,71(2):243-249
Learning to classify diverse experiences into meaningful groups, like categories, is fundamental to normal cognition. To understand its neural basis, we simultaneously recorded from multiple electrodes in lateral prefrontal cortex and dorsal striatum, two interconnected brain structures critical for learning. Each day, monkeys learned to associate novel abstract, dot-based categories with a right versus left saccade. Early on, when they could acquire specific stimulus-response associations, striatum activity was an earlier predictor of the corresponding saccade. However, as the number of exemplars increased and monkeys had to learn to classify them, PFC activity began to predict the saccade associated with each category before the striatum. While monkeys were categorizing novel exemplars at a high rate, PFC activity was a strong predictor of their corresponding saccade early in the trial before the striatal neurons. These results suggest that striatum plays a greater role in stimulus-response association and PFC in abstraction of categories.  相似文献   

4.
The medial prefrontal cortex (mPFC) is implicated in anxiety-like behaviour. In rodent models, perturbations of mPFC neuronal activity through pharmacological manipulations, optogenetic activation of mPFC neurons or cell-type specific pharmacogenetic inhibition of somatostatin interneurons indicate conflicting effects on anxiety-like behaviour. In the present study we examined the effects of pharmacogenetic activation of Ca2+/calmodulin-dependent protein kinase α (CamKIIα)-positive excitatory neurons on anxiety-like behaviour. We used clozapine-N-oxide (CNO) to pharmacogenetically activate virally delivered CamKIIα-hM3Dq-DREADD in mPFC excitatory neurons. The effects of acute CNO or vehicle treatment on anxiety-like behaviour in the open field and elevated plus maze tests were examined in rats virally infected with either CamKIIα-hM3Dq-DREADD or CamKIIα-GFP. In addition, the effects of acute CNO treatment on the expression of the neuronal activity marker c-Fos were examined in the mPFC as well as downstream target neuronal circuits using immunohistochemistry. Acute pharmacogenetic activation of mPFC excitatory neurons evoked a significant decrease in anxiety-like behaviour selectively on the elevated plus maze task, but not the open field test. Acute CNO treatment resulted in enhanced c-Fos-immunopositive cell number in the infralimbic, prelimbic and cingulate subdivisions of the mPFC. This was also accompanied by enhanced c-Fos-immunopositive cell number in multiple downstream circuits of the mPFC in CNO-treated hM3Dq animals. Acute pharmacogenetic activation of mPFC excitatory neurons reduces anxiety-like behaviour in a task-specific fashion accompanied by enhanced c-Fos expression in the mPFC and multiple target circuits implicated in the regulation of anxiety-like behaviour.  相似文献   

5.
This experiment examined the effect of medial prefrontal lesions on time-place learning in the rat. During the first phase, prior to lesioning, rats received training on an interval time-place task. Food was available on each of four levers for 3 consecutive min of a 12-min session. The levers provided food in the same sequence on all trials. Rats restricted the majority of their presses on each lever to the time in each session when it provided food and were able to anticipate when a lever was going to provide food. During the second phase some rats received lesions that were restricted to the medial prefrontal cortex. Following these very restricted lesions, rats continued pressing a lever after it stopped providing food (i.e. perseverated, as if their internal clock was running slow). The third phase involved changing the order in which the levers provided food. Lesions had no discernable effect on the rats' ability to learn the correct sequence of food availability. However, this change made the rats' timing perseveration even more noticeable. Our results suggest the medial prefrontal cortex is not necessary for acquisition of time-place sequencing information. However, lesions do appear to produce perseveration on components of the sequence.  相似文献   

6.
Maternal behavior is a motivated behavior that includes pup-directed sequential motor acts. The dopaminergic (DAergic) brain systems have been proposed to play an important role in voluntary maternal acts, however, not much is known about the way these systems function during the performance of this behavior. The electroencephalogram (EEG) is a sensitive tool that allows determination of the simultaneous functioning of different structures in relation to specific cognitive processes or motor acts. The present study recorded the function of the two structures that constitute the mesoprefrontal DAergic system, ventral tegmental area (VTA) and prefrontal cortex (PFC) by EEG during the performance of various maternal behaviors. Bilateral EEG from the VTA and medial PFC (mPFC) was simultaneously recorded during typical maternal acts and was compared to that recorded during non-maternal behaviors in freely moving female rats. Three different frequency bands (6-7, 8-11, and 12-21 Hz) were obtained from principal component analysis applied to the EEG for both structures. In the left and right mPFC and VTA, absolute power (AP) of the 8-11 Hz band showed a significant increase during pup retrieval compared to the EEG during walking. In the left and right mPFC and VTA, AP of the three bands showed a significant increase during pup licking with respect to forepaw licking. No differences in the EEG were found during inactive nursing behaviors compared to the awake quiet condition. The mPFC and VTA presented characteristic EEG patterns during active maternal behaviors but not during inactive maternal behaviors. This provides electrical evidence of the involvement of these structures in the performance of maternal behavior.  相似文献   

7.
The conditions for the introduction of active carbonate groups into supports containing hydroxyl groups by reaction with 5-norbornene-2.3-dicarboximido carbonochloridate are described. Up to 1.5 mmol carbonate groups/g dry Sepharose 4B could be bound. In the case of glycine the reaction of the activated supports with the amino groups takes place with a 10-fold higher rate than the hydrolysis of the carbonate groups, and high coupling yields can be reached. It is shown that the activated supports are well suitable for the preparation of carriers for affinity chromatography or the immobilization of enzymes.  相似文献   

8.
9.
Adhikari A  Topiwala MA  Gordon JA 《Neuron》2011,71(5):898-910
The medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) functionally interact during innate anxiety tasks. To explore the consequences of this interaction, we examined task-related firing of single units from the mPFC of mice exploring standard and modified versions of the elevated plus maze (EPM), an innate anxiety paradigm. Hippocampal local field potentials (LFPs) were simultaneously monitored. The population of mPFC units distinguished between safe and aversive locations within the maze, regardless of the nature of the anxiogenic stimulus. Strikingly, mPFC units with stronger task-related activity were more strongly coupled to theta-frequency activity in the vHPC LFP. Lastly, task-related activity was inversely correlated with behavioral measures of anxiety. These results clarify the role of the vHPC-mPFC circuit in innate anxiety and underscore how specific inputs may be involved in the generation of behaviorally relevant neural activity within the mPFC.  相似文献   

10.
Setlow B  Schoenbaum G  Gallagher M 《Neuron》2003,38(4):625-636
A growing body of evidence implicates the ventral striatum in using information acquired through associative learning. The present study examined the activity of ventral striatal neurons in awake, behaving rats during go/no-go odor discrimination learning and reversal. Many neurons fired selectively to odor cues predictive of either appetitive (sucrose) or aversive (quinine) outcomes. Few neurons were selective when first exposed to the odors, but many acquired this differential activity as rats learned the significance of the cues. A substantial proportion of these neurons encoded the cues' learned motivational significance, and these neurons tended to reverse their firing selectivity after reversal of odor-outcome contingencies. Other neurons that became selectively activated during learning did not reverse, but instead appeared to encode specific combinations of cues and associated motor responses. The results support a role for ventral striatum in using the learned significance, both appetitive and aversive, of predictive cues to guide behavior.  相似文献   

11.
Shmuelof L  Zohary E 《Neuron》2005,47(3):457-470
Neuropsychological case studies suggest the existence of two functionally separate visual streams: the ventral pathway, central for object recognition; and the dorsal pathway, engaged in visually guided actions. However, a clear dissociation between the functions of the two streams has not been decisively shown in intact humans. In this study, we demonstrate dissociation between dorsal and ventral fMRI activation patterns during observation of object manipulation video clips. Parietal areas, such as anterior intraparietal sulcus (aIPS) display grasp viewing-dependent adaptation (i.e., fMR adaptation during repeated viewing of the same object-grasping movement) as well as a contralateral preference for the viewed manipulating hand. Ventral regions, such as the fusiform gyrus, show similar characteristics (i.e., adaptation, contralateral preference), but these depend on object identity. Our results support the hypothesized functional specialization in the visual system and suggest that parietal areas (such as aIPS) are engaged in action recognition, as well as in action planning.  相似文献   

12.
《Cell reports》2023,42(1):111941
  1. Download : Download high-res image (225KB)
  2. Download : Download full-size image
  相似文献   

13.
During walking in water (WW) the vertical component of ground reaction forces decreases, while the greater propulsive force is required to move forward against the greater resistance of water. In such reduced gravity environment, Hutchison et al. (1989) have demonstrated that the relative activation of rat medial gastrocnemius (MGAS) increased compared to that of the soleus (SOL) during swimming, suggesting different effects of peripheral information on motoneuron excitability of these muscles. It is conceivable that both buoyancy and resistance of water have different effects on the activation patterns of triceps surae muscles during WW, since the reduced weight in water might decrease the peripheral inflow relating load information while greater volitional command might be needed to propel a body forward against the water resistance. The present study was designed to assess each peripheral inflow and efferent input by adjusting the load and walking speed voluntarily during WW. The aim of this study is to investigate the dissociative activation pattern between the SOL and the MGAS during WW.  相似文献   

14.
Mitchell JP  Macrae CN  Banaji MR 《Neuron》2006,50(4):655-663
Human social interaction requires the recognition that other people are governed by the same types of mental states-beliefs, desires, intentions-that guide one's own behavior. We used functional neuroimaging to examine how perceivers make mental state inferences when such self-other overlap can be assumed (when the other is similar to oneself) and when it cannot (when the other is dissimilar from oneself). We observed a double dissociation such that mentalizing about a similar other engaged a region of ventral mPFC linked to self-referential thought, whereas mentalizing about a dissimilar other engaged a more dorsal subregion of mPFC. The overlap between judgments of self and similar others suggests the plausibility of "simulation" accounts of social cognition, which posit that perceivers can use knowledge about themselves to infer the mental states of others.  相似文献   

15.
The participation of noradrenaline (NE) and serotonine (5-HT) in self-stimulation (SS) of the medial prefrontal cortex (MPC) in the rat has been studied. Three groups of rats with bilateral electrodes implanted into the MPC were used in these experiments. In one of the groups, electrodes were also implanted into the locus coeruleus. In the first group, the rats received systemic injections of the following drugs: clonidine (alpha-agonist), phenoxybenzamine (alpha-antagonist), isoproterenol (beta-agonist) and propranolol (beta-antagonist). In the second group, p-chlorophenylalanine (a 5-HT synthesis inhibitor) was administered intragastrically and SS measured during the following 16 days. In these two groups of rats and previous to every SS session, spontaneous motor activity (SM) was measured as control for non specific effects of the drugs. In a third group of rats, lesions of the locus coeruleus were performed unilaterally and SS measured in both prefrontal cortex during the following 16 days post-lesion. SS contralateral to the lesioned side served as control for non-specific effects of the lesions. After all these treatments, SS of the MPC was not specifically affected. Our results suggest the non participation of NE and 5-HT terminals in the neural substrates underlying SS of the MPC.  相似文献   

16.
We studied the interactions between short- and long-term plastic changes taking place during the acquisition of a classical eyeblink conditioning and following high-frequency stimulation (HFS) of the reuniens nucleus in behaving mice. Synaptic changes in strength were studied at the reuniens-medial prefrontal cortex (mPFC) and the reuniens-CA1 synapses. Input/output curves and a paired-pulse study enabled determining the functional capabilities of the two synapses and the optimal intensities to be applied at the reuniens nucleus during classical eyeblink conditioning and for HFS applied to the reuniens nucleus. Animals were conditioned using a trace paradigm, with a tone as conditioned stimulus (CS) and an electric shock to the trigeminal nerve as unconditioned stimulus (US). A single pulse was presented to the reuniens nucleus to evoke field EPSPs (fEPSPs) in mPFC and CA1 areas during the CS-US interval. No significant changes in synaptic strength were observed at the reuniens-mPFC and reuniens-CA1 synapses during the acquisition of eyelid conditioned responses (CRs). Two successive HFS sessions carried out during the first two conditioning days decreased the percentage of CRs, without evoking any long-term potentiation (LTP) at the recording sites. HFS of the reuniens nucleus also prevented the proper acquisition of an object discrimination task. A subsequent study revealed that HFS of the reuniens nucleus evoked a significant decrease of paired-pulse facilitation. In conclusion, reuniens nucleus projections to prefrontal and hippocampal circuits seem to participate in the acquisition of associative learning through a mechanism that does not required the development of LTP.  相似文献   

17.
Perlecan/HSPG2 is a large, multi-domain, multifunctional heparan sulfate proteoglycan with a wide tissue distribution. With the exception of its unique domain I, each of perlecan's other four domains shares sequence similarity to other protein families including low density lipoprotein (LDL) receptor, laminin alpha chain, neural cell adhesion molecule (NCAM), immunoglobulin (Ig) superfamily members, and epidermal growth factor (EGF). Previous studies demonstrated that glycosaminoglycan-bearing perlecan domain I supports early chondrogenesis and growth factor delivery. Other sites in the core protein interact with other matrix molecules and support cell adhesion, although the peptide sequences involved remain unidentified. To identify novel functional motifs within perlecan, we used a bioinformatics approach to predict regions likely to be on the exterior of the folded protein. Unique hydrophilic sequences of about 18 amino acids were selected for testing in cell adhesion assays. A novel peptide sequence (TWSKVGGHLRPGIVQSG) from an immunoglobulin (Ig) repeat in domain IV supported rapid cell adhesion, spreading and focal adhesion kinase (FAK) activation when compared to other peptides, a randomly scrambled sequence of the domain IV peptide or a negative control protein. MG-63 human osteosarcoma cells, epithelial cells and multipotent C(3)H10T1/2 cells, but not bone marrow cells, rapidly, i.e., within 30 min, formed focal adhesions and assembled an actin cytoskeleton on domain IV peptide. Cell lines differentially adhered to the domain IV peptide, suggesting adhesion is receptor specific. Adhesion was divalent cation independent and heparin sensitive, a finding that may explain some previously poorly understood observations obtained with intact perlecan. Collectively, these studies demonstrate the feasibility of using bioinformatics-based strategies to identify novel functional motifs in matrix proteins such as perlecan.  相似文献   

18.
Intrathecal methotrexate in children with leukemia is known to cause seizures, dementia, leukoencephalopathy, and cognitive dysfunction after long-term treatment. To investigate the cognitive dysfunction, male Wistar rats were given multiple intracerebroventricular injections of methotrexate. Its effect on behaviour was tested in the two-compartment conditioned avoidance task and dark-bright arena test. Levels of brain amines in the hippocampal region of the brain were estimated by HPLC. The qualitative and quantitative histopathological changes in the different regions of the hippocampus were studied by cresyl violet staining. Multiple injections (1 or 2 mg/kg) produced convulsions and learning and memory impairment but did not induce anxiolytic activity. They also reduced concentrations of all three brain amines (norepinephrine, dopamine, and serotonin) and the serotonin metabolite 5-hydroxyindoleacetic acid. The CA4 region of the hippocampus was severely affected by intraventricular methotrexate. Disruption of brain monoamines has been proposed as a cause of brain dysfunction from this chemotherapy, and that disruption may in turn involve cytotoxic effects of methotrexate on brain tissue. The outcomes of this study may have therapeutic implications in the management of cancer conditions, particularly in childhood lymphoblastic leukemia.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号