首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid rafts and membrane traffic   总被引:9,自引:0,他引:9  
Hanzal-Bayer MF  Hancock JF 《FEBS letters》2007,581(11):2098-2104
Membrane rafts are regions of increased lipid acyl chain order that differ in their lipid and protein composition from the surrounding membrane. By providing an additional level of compartmentalization they have been proposed to serve many functions in cellular signal transduction and trafficking. We will review their potential involvement in different forms of membrane traffic, explicitly excluding signalling, and discuss select aspects of the raft hypothesis in its current form.  相似文献   

2.
The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell’s organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.  相似文献   

3.
The ins and outs of sphingolipid synthesis   总被引:14,自引:0,他引:14  
Sphingolipids are ubiquitous components of eukaryotic cell membranes, where they play important roles in intracellular signaling and in membrane structure. Even though the biochemical pathway of sphingolipid synthesis and its compartmentalization between the endoplasmic reticulum and Golgi apparatus have been known for many years, the molecular identity of the enzymes in this pathway has only recently been elucidated. Here, we summarize progress in the identification and characterization of the enzymes, the transport of ceramide from the endoplasmic reticulum to the Golgi apparatus, and discuss how regulating the synthesis of sphingolipids might impact upon their functions.  相似文献   

4.
Biological membranes organize their proteins and lipids into nano‐ and microscale patterns. In the yeast plasma membrane (PM), constituents segregate into a large number of distinct domains. However, whether and how this intricate patchwork contributes to biological functions at the PM is still poorly understood. Here, we reveal an elaborate interplay between PM compartmentalization, physiological function, and endocytic turnover. Using the methionine permease Mup1 as model system, we demonstrate that this transporter segregates into PM clusters. Clustering requires sphingolipids, the tetraspanner protein Nce102, and signaling through TORC2. Importantly, we show that during substrate transport, a simple conformational change in Mup1 mediates rapid relocation into a unique disperse network at the PM. Clustered Mup1 is protected from turnover, whereas relocated Mup1 actively recruits the endocytic machinery thereby initiating its own turnover. Our findings suggest that lateral compartmentalization provides an important regulatory link between function and turnover of PM proteins.  相似文献   

5.
Membrane domains in lymphocytes - from lipid rafts to protein scaffolds   总被引:1,自引:0,他引:1  
Lateral compartmentalization of the plasma membrane into domains is a key feature of immune cell activation and subsequent immune effector functions. Here, we will review the high diversity of membrane domains, ranging from elementary lipid rafts, envisioned as dynamic and small domains (in the tens of nm), to relatively stable μm-scale membrane domains, which form the immunologic synapse of T lymphocytes. We will discuss the relationship between these different types of plasma membrane domains and how raft lipid- and protein-controlled interactions and cell biological processes cooperate to generate functional domains that mediate lymphocyte activity.  相似文献   

6.
Membrane specialization through lateral compartmentalization is pivotal to the development of organisms and their response to environmental signals. The membrane raft hypothesis is lively discussed as a concept for domain formation. In recent years plant scientists have begun to critically assess the membrane raft hypothesis, and this provided the first insights into the mechanisms underlying microdomain formation in plant plasma membranes. Several groups have now shown that phytosterols can induce phase separation, a prerequisite for the formation of membrane rafts. Furthermore, the protein repertoire of detergent-resistant membranes (DRMs) has been extensively characterized and the degree of fatty acid desaturation has been identified as an important factor in DRM formation. Recent studies comprising sterol-deficient mutants demonstrated the importance of correct sterol composition and endocytosis for proper membrane compartmentalization.  相似文献   

7.
Eukaryotic plasma membranes are highly compartmentalized structures. So far, only a few individual proteins that function in a wide range of cellular processes have been shown to segregate into microdomains. However, the biological roles of most microdomain-associated proteins are unknown. Here, we investigated the heterogeneity of distinct microdomains and the complexity of their coexistence. This diversity was determined in living cells of intact multicellular tissues using 20 different marker proteins from Arabidopsis thaliana, mostly belonging to the Remorin protein family. These proteins associate with microdomains at the cytosolic leaflet of the plasma membrane. We characterized these membrane domains and determined their lateral dynamics by extensive quantitative image analysis. Systematic colocalization experiments with an extended subset of marker proteins tested in 45 different combinations revealed the coexistence of highly distinct membrane domains on individual cell surfaces. These data provide valuable tools to study the lateral segregation of membrane proteins and their biological functions in living plant cells. They also demonstrate that widely used biochemical approaches such as detergent-resistant membranes cannot resolve this biological complexity of membrane compartmentalization in vivo.  相似文献   

8.
9.
The most outstanding feature of eukaryotic cells is compartmentalization by membranes, which enables them to achieve a broad spectrum of functions; some of them are common to all cell-types and others are specific to certain cell-types. Individual compartments, namely organelles, have unique sets of proteins that are specifically delivered from one compartment to another by membrane traffic. During the past several years, combinations of genomic, proteomic, structural and real-time imaging analyses with conventional genetical, biochemical and cell biological approaches have provided us with much new information not only about the intricate pathways and sophisticated regulatory mechanisms of membrane traffic but also about integration of membrane traffic with other cellular functions such as signaling and morphogenesis. This Minireview series composed of eight articles highlights the recent progress in this rapidly expanding research field.  相似文献   

10.
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.  相似文献   

11.
Proteins destined for the secretory pathway are translocated into the endoplasmic reticulum (ER) by signal sequences that vary widely in their functional properties. We have investigated whether differences in signal sequence function have been exploited for cellular benefit. A cytosolic form of the ER chaperone calreticulin was found to arise by an aborted translocation mechanism dependent on its signal sequence and factors in the ER lumen and membrane. A signal sequence that functions independently of these accessory translocation factors selectively eliminated cytosolic calreticulin. In vivo replacement of endogenous calreticulin with a constitutively translocated form influenced glucocorticoid receptor-mediated gene activation without compromising chaperone activity in the ER. Thus, in addition to its well-established ER lumenal functions, calreticulin has an independent role in the cytosol that depends critically on its inefficient compartmentalization. We propose that regulation of protein translocation represents a potentially general mechanism for generating diversity of protein function.  相似文献   

12.
13.
The application of mass spectrometry to membrane proteomics   总被引:15,自引:0,他引:15  
Membrane proteins perform some of the most important functions in the cell, including the regulation of cell signaling through surface receptors, cell-cell interactions, and the intracellular compartmentalization of organelles. Recent developments in proteomic strategies have focused on the inclusion of membrane proteins in high-throughput analyses. While slow and steady progress continues to be made in gel-based technologies, significant advances have been reported in non-gel shotgun methods using liquid chromatography coupled to mass spectrometry (LC/MS). These latter strategies facilitate the identification of large numbers of membrane proteins and modifications, and have the potential to provide insights into protein topology and orientation in membranes.  相似文献   

14.
Mitochondria are vital organelles that perform a variety of fundamental functions ranging from the synthesis of ATP through to being intimately involved in programmed cell death. Comprised of at least six compartments: outer membrane, inner boundary membrane, intermembrane space, cristal membranes, intracristal space, and matrix, mitochondria have a complex, dynamic internal structure. This internal dynamism is reflected in the pleomorphy and motility of mitochondria. Mitochondria contain their own DNA (mtDNA), encoding a small number of vital genes, but this role as a genetic vault is not compatible with the role of mitochondria in bioenergetics since electron transport results in the generation of reactive oxygen species (ROS) that induce lesions in the mtDNA. It is hypothesized that ROS shape the morphological organization of the higher plant cell mitochondrial population into a discontinuous whole, and that ROS are a selective pressure affecting the organization of the mitochondrial genome. This review describes how inter- and intra-mitochondrial compartmentalization underpins the biology of this complex organelle.  相似文献   

15.
The mitochondrial compartment   总被引:1,自引:0,他引:1  
Mitochondria are vital organelles that perform a variety of fundamental functions ranging from the synthesis of ATP through to being intimately involved in programmed cell death. Comprised of at least six compartments: outer membrane, inner boundary membrane, intermembrane space, cristal membranes, intracristal space, and matrix, mitochondria have a complex, dynamic internal structure. This internal dynamism is reflected in the pleomorphy and motility of mitochondria. Mitochondria contain their own DNA (mtDNA), encoding a small number of vital genes, but this role as a genetic vault is not compatible with the role of mitochondria in bioenergetics since electron transport results in the generation of reactive oxygen species (ROS) that induce lesions in the mtDNA. It is hypothesized that ROS shape the morphological organization of the higher plant cell mitochondrial population into a discontinuous whole, and that ROS are a selective pressure affecting the organization of the mitochondrial genome. This review describes how inter- and intra-mitochondrial compartmentalization underpins the biology of this complex organelle.  相似文献   

16.
Peroxisome biogenesis in yeast   总被引:6,自引:0,他引:6  
Eukaryotic cells have evolved a complex set of intracellular organelles, each of which possesses a specific complement of enzymes and performs unique metabolic functions. This compartmentalization of cellular functions provides a level of metabolic control not available to prokaryotes. However, it presents the eukaryotic cell with the problem of targeting proteins to their specific location(s). Proteins must be efficiently transported from their site of synthesis in the cytosol to their specific organelle(s). Such a process may require translocation across one or more hydrophobic membrane barriers and/or asymmetric integration into specific membranes. Proteins carry cis-acting amino acid sequences that serve to act as recognition motifs for protein sorting and for the cellular translocation machinery. Sequences that target proteins to the endoplasmic reticulum/secretory pathway, mitochondria, and chloroplasts are often present as cleavable amino-terminal extensions. In contrast, most peroxisomal proteins are synthesized at their mature size and are translocated to the organelle without any post-translational modification. This review will summarize what is known about how yeast solve the problem of specifically importing proteins into peroxisomes and will suggest future directions for investigations into peroxisome biogenesis in yeast.  相似文献   

17.
Melanoma progression is associated with changes in adhesion receptor expression, in particular upregulation of N-cadherin which promotes melanoma cell survival and invasion. Plasma membrane lipid rafts contribute to the compartmentalization of signaling complexes thereby regulating their function, but how they may affect the properties of adhesion molecules remains elusive. In this study, we addressed the question whether lipid rafts in melanoma cells may contribute to the compartmentalization of N-cadherin. We show that a fraction of N-cadherin in a complex with catenins is associated with cholesterol/sphingolipid-rich membrane microdomains in aggressive melanoma cells in vitro and experimental melanomas in vivo. Partitioning of N-cadherin in membrane rafts is not modulated by growth factors and signaling pathways relevant to melanoma progression, is not necessary for cell-cell junctions' establishment or maintenance, and is not affected by cell-cell junctions' and actin cytoskeleton disruption. These results reveal that two independent pools of N-cadherin exist on melanoma cell surface: one pool is independent of lipid rafts and is engaged in cell-cell junctions, while a second pool is localized in membrane rafts and does not participate in cell-cell adhesions. Targeting to membrane rafts may represent a previously unrecognized mechanism regulating N-cadherin function in melanoma cells.  相似文献   

18.
The three mammalian Ras isoforms: HRas, NRas and KRas have been widely implicated in the control of cell proliferation, survival, motility and transformation. Although nearly identical with respect to their catalytic and effector-binding properties, HRas, NRas and KRas lead to different biological outcomes in development, cell growth and cancer. This functional distinction is believed to result at least in part from the differential membrane compartmentalization of Ras isoforms. The different distribution of Ras proteins in cellular membranes dictates unique spatio-temporal patterns of activation of effector pathways. This perspective focuses on the factors that control membrane compartmentalization of Ras with an emphasis on a recently discovered novel posttranslational modification of Ras—ubiquitination. The properties of Ras ubiquitination, its contribution to the regulation of Ras intracellular trafficking and finally the influence of Ras ubiquitination on its signaling potential are discussed.  相似文献   

19.
Summary The cytochemical localization of the lysosomal marker enzyme acid phosphatase was studied in the chloragogenous tissue of earthworms. The Gomori lead technique and the cerium capture technique were utilized. Both techniques demonstrated the chloragosomal location of this enzyme. Only a small proportion of chloragosomes presented reactivity, which suggests that these organelles are distinctly heterogeneous. The reaction product was localized in the periphery of chloragosomes, suggesting a membrane-bound compartmentalization of acid phosphatase. In addition, degenerating mitochondria and membrane whorls were observed in some chloragosomes, indicating the possibility that these organelles perform autophagosomal functions.  相似文献   

20.
Glutamate, the main excitatory amino acid in the vertebrate brain, is critically involved in most of the physiological functions of the central nervous system. It has traditionally been assumed that glutamate triggers a wide array of signaling cascades through the activation of specific membrane receptors. The extracellular levels are tightly regulated to prevent neurotoxic insults. Electrogenic Na(+)-dependent glial glutamate transporters remove the bulk of the neurotransmitter from the synaptic cleft. An exquisitely ordered coupling between glutamatergic neurons and surrounding glia cells is fundamental for excitatory transmission. The glutamate/glutamine and astrocyte/neuron lactate shuttles provide the biochemical framework of this compulsory association. In this context, recent advances show that glial glutamate transporters act as signal transducers that regulate the expression of proteins involved in their compartmentalization with neurons in the so-called tripartite synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号