首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Osteoarthritis (OA) is a debilitating, degenerative joint disease characterized by progressive destruction of articular cartilage. Given the poor repair capacity of articular cartilage and the associated local destructive immune/inflammatory responses involving all joint structures, OA frequently ends up as a “whole joint failure” requiring prosthetic replacement. Current pharmacological efforts, belatedly started, mainly aim at symptomatic pain relief, underscoring the need for novel therapeutic schemes designed to modify the course of the disease. Mesenchymal stem cell (MSC)–based therapy has gained significant interest, sparking the design of multiple trials proving safety while providing promising preliminary efficacy results. MSCs possess ‘medicinal signaling cell’ properties related to their immunomodulatory and anti-inflammatory effects, which induce the establishment of a pro-regenerative microenvironment at the injured tissue. Those trophic effects are paralleled by the long-established chondroprogenitor capacity that can be harnessed to ex vivo fabricate engineered constructs to repair damaged articular cartilage. The present review focuses on these two aspects of the use of MSCs for articular cartilage damage, namely, cell therapy and tissue engineering, providing information on their use criteria, advancements, challenges and strategies to overcome them.  相似文献   

2.
In humans, loss-of-function mutations in WISP3 cause the autosomal recessive skeletal disease progressive pseudorheumatoid dysplasia (PPD) (Online Mendelian Inheritance in Man database number 208230). WISP3 encodes Wnt1-inducible signaling protein 3, a cysteine-rich, multidomain, secreted protein, whose paralogous CCN (connective tissue growth factor/cysteine-rich protein 61/nephroblastoma overexpressed) family members have been implicated in diverse biologic processes including skeletal, vascular, and neural development. To understand the role of WISP3 in the skeleton, we targeted the Wisp3 gene in mice by creating a mutant allele comparable to that which causes human disease. We also created transgenic mice that overexpress human WISP3 in cartilage. Surprisingly, homozygous Wisp3 mutant mice appear normal and do not recapitulate any of the morphological, radiographic, or histological abnormalities seen in patients with PPD. Mice that overexpress WISP3 are also normal. We conclude, that in contrast to humans, Wisp3 is not an essential participant during skeletal growth or homeostasis in mice.  相似文献   

3.
摘要:髋关节撞击综合征(femoroacetabular impingement,FAI)是以髋关节解剖结构异常而引发的股骨近端和髋臼间发生异常碰 撞,从而导致髋关节盂唇和关节软骨的退行性变化,引起髋关节慢性疼痛的疾病。髋关节活动范围特别是屈曲和内旋受限,最终 发展为髋关节骨关节炎。FAI在我国国内为一个较新的概念,临床能得到诊断的病例不多,但实际病例很多,相当一部分的髋关节 疼痛是由撞击征造成,平常的药物止痛不能解除持续的撞击,最终会发生骨关节炎。由此早期的诊断及手术干预,可以消除疼痛, 防止骨关节炎的发生,进而推迟或消除关节置换手术是有巨大的经济和社会价值。  相似文献   

4.
吴奇  韩一生  张振宇  陈伯亮  郭建斌 《生物磁学》2014,(8):1587-1590,1600
髋关节撞击综合征(femoroacetabularimpingement,FAI)是以髋关节解剖结构异常而引发的股骨近端和髋臼间发生异常碰撞,从而导致髋关节孟唇和关节软骨的退行性变化,引起髋关节慢性疼痛的疾病。髋关节活动范围特别是屈曲和内旋受限,最终发展为髋关节骨关节炎。FAI在我国国内为一个较新的概念,临床能得到诊断的病例不多,但实际病例很多,相当一部分的髋关节疼痛是由撞击征造成,平常的药物止痛不能解除持续的撞击,最终会发生骨关节炎。由此早期的诊断及手术干预,可以消除疼痛,防止骨关节炎的发生。进而推迟或消除关节置换手术是有巨大的经济和社会价值。  相似文献   

5.
《Cellular signalling》2014,26(5):951-958
BackgroundBoth Wnt signaling and TGF-β signaling have been implicated in the regulation of the phenotype of many cell types including chondrocytes, the only cell type present in the articular cartilage. A changed chondrocyte phenotype, resulting in chondrocyte hypertrophy, is one of the main hallmarks of osteoarthritis. TGF-β signaling via activin-like kinase (ALK)5, resulting in Smad 2/3 phosphorylation, inhibits chondrocyte hypertrophy. In contrast, TGF-β signaling via ALK1, leading to Smad 1/5/8 phosphorylation, has been shown to induce chondrocyte hypertrophy. In this study, we investigated the capability of Wnt3a and WISP1, a protein downstream in canonical Wnt signaling, to skew TGF-β signaling in chondrocytes from the protective Smad 2/3 towards the Smad 1/5/8 pathway.ResultsStimulation with Wnt3a, either alone or in combination with its downstream protein WISP1, decreased TGF-β-induced C-terminal phosphorylation of Smad 2/3. In addition, both Wnt3a and WISP1 increased Smad 1/5/8 phosphorylation at the C-terminal domain in both murine and human chondrocytes. DKK-1, a selective inhibitor of canonical Wnt signaling, abolished these effects. TGF-β signaling via Smad 2/3, measured by the functional CAGA12-Luc reporter construct activity, was decreased by stimulation with Wnt3a in accordance with the decrease in Smad 2/3 phosphorylation found on Western blot. Furthermore, in vivo overexpression of the canonical Wnt8a decreased Smad 2/3 phosphorylation and increased Smad 1/5/8 phosphorylation.ConclusionsOur data show that canonical Wnt signaling is able to skew TGF-β signaling towards dominant signaling via the ALK1/Smad 1/5/8 pathway, which reportedly leads to chondrocyte hypertrophy. In this way canonical Wnts and WISP1, which we found to be increased during experimental osteoarthritis, may contribute to osteoarthritis pathology.  相似文献   

6.

Introduction

Patellofemoral joint osteoarthritis (OA) is common and leads to pain and disability. However, current classification criteria do not distinguish between patellofemoral and tibiofemoral joint OA. The objective of this study was to provide empirical evidence of the clinical features of patellofemoral joint OA (PFJOA) and to explore the potential for making a confident clinical diagnosis in the community setting.

Methods

This was a population-based cross-sectional study of 745 adults aged ≥50 years with knee pain. Information on risk factors and clinical signs and symptoms was gathered by a self-complete questionnaire, and standardised clinical interview and examination. Three radiographic views of the knee were obtained (weight-bearing semi-flexed posteroanterior, supine skyline and lateral) and individuals were classified into four subsets (no radiographic OA, isolated PFJOA, isolated tibiofemoral joint OA, combined patellofemoral/tibiofemoral joint OA) according to two different cut-offs: ''any OA'' and ''moderate to severe OA''. A series of binary logistic and multinomial regression functions were performed to compare the clinical features of each subset and their ability in combination to discriminate PFJOA from other subsets.

Results

Distinctive clinical features of moderate to severe isolated PFJOA included a history of dramatic swelling, valgus deformity, markedly reduced quadriceps strength, and pain on patellofemoral joint compression. Mild isolated PFJOA was barely distinguished from no radiographic OA (AUC 0.71, 95% CI 0.66, 0.76) with only difficulty descending stairs and coarse crepitus marginally informative over age, sex and body mass index. Other cardinal signs of knee OA - the presence of effusion, bony enlargement, reduced flexion range of movement, mediolateral instability and varus deformity - were indicators of tibiofemoral joint OA.

Conclusions

Early isolated PFJOA is clinically manifest in symptoms and self-reported functional limitation but has fewer clear clinical signs. More advanced disease is indicated by a small number of simple-to-assess signs and the relative absence of classic signs of knee OA, which are predominantly manifestations of tibiofemoral joint OA. Confident diagnosis of even more advanced PFJOA may be limited in the community setting.  相似文献   

7.
Loss-of-function mutations in the gene WISP3 cause the autosomal recessive human skeletal disease Progressive Pseudorheumatoid Dysplasia, whereas mice with knockout mutations of Wisp3 have no phenotype. The lack of a phenotype in the Wisp3 knockout mice has constrained studies of the protein’s in vivo function. Over-expression experiments in zebrafish indicated that WISP3 may function as a BMP and Wnt signaling modulator. To determine whether these biologic activities are retained in mice, we created two strains of transgenic mice that over-express WISP3 in a broad array of tissues. Despite strong and persistent protein over-expression, the transgenic mice remained phenotypically indistinguishable from their non-transgenic littermates. Surprisingly, WISP3 contained in conditioned medium recovered from transgenic mouse primary kidney cell cultures was able to bind BMP and to inhibit BMP signaling in vitro. Factors that account for the difference between the in vitro and in vivo activities of WISP3 remain unknown. At present, the mouse remains a challenging model organism in which to explore the biologic function of WISP3.  相似文献   

8.
股骨头坏死是一种常见的疾病,在30岁至60岁年龄段的人群中较为常见,临床的症状包括疼痛以及髋部不适等,股骨头坏死在早期很难发现,由于没有得到准确的诊断,耽误了最佳的治疗时间和有效的治疗,随着病情的发展,最终将会造成股骨头变形以及塌陷,从而引起骨性关节炎,对髋关节功能的影响是很大的,甚至会丧失髋关节的基本功能。股骨头坏死的病状体征和早期症状存在一定的隐蔽性,因此,造成误诊的情况频繁发生。此外,有些疾病的症状表现为髋关节疼痛,最后反而容易被误诊为股骨头坏死。  相似文献   

9.
Mutations in ANKH cause chondrocalcinosis   总被引:2,自引:0,他引:2       下载免费PDF全文
Chondrocalcinosis (CC) is a common cause of joint pain and arthritis that is caused by the deposition of calcium-containing crystals within articular cartilage. Although most cases are sporadic, rare familial forms have been linked to human chromosomes 8 (CCAL1) or 5p (CCAL2) (Baldwin et al. 1995; Hughes et al. 1995; Andrew et al. 1999). Here, we show that two previously described families with CCAL2 have mutations in the human homolog of the mouse progressive ankylosis gene (ANKH). One of the human mutations results in the substitution of a highly conserved amino acid residue within a predicted transmembrane segment. The other creates a new ATG start site that adds four additional residues to the ANKH protein. Both mutations segregate completely with disease status and are not found in control subjects. In addition, 1 of 95 U.K. patients with sporadic CC showed a deletion of a single codon in the ANKH gene. The same change was found in a sister who had bilateral knee replacement for osteoarthritis. Each of the three human mutations was reconstructed in a full-length ANK expression construct previously shown to regulate pyrophosphate levels in cultured cells in vitro. All three of the human mutations showed significantly more activity than a previously described nonsense mutation that causes severe hydroxyapatite mineral deposition and widespread joint ankylosis in mice. These results suggest that small sequence changes in ANKH are one cause of CC and joint disease in humans. Increased ANK activity may explain the different types of crystals commonly deposited in human CCAL2 families and mutant mice and may provide a useful pharmacological target for treating some forms of human CC.  相似文献   

10.
The paper provides the results of MRI studies in 100 patients having complaints of pain and impaired movements in the shoulder joint in order to establish a diagnosis. Sixty-three patients were found to have MRI signs of shoulder joint instability (SJI). The paper presents and states the found MRI symptoms of SJI. The author concludes that MRI of the shoulder joint in its instability should be used appropriately as it may early reveal changes in the articular osseous, cartilaginous, and soft tissues, which is useful in diagnosing and choosing a treatment.  相似文献   

11.
The paper provides the results of MRI studies in 100 patients having complaints of pain and impaired movements in the shoulder joint in order to establish a diagnosis. Sixty-three patients were found to have MRI signs of shoulder joint instability (SJI). The paper presents and states the found MRI symptoms of SJI. The authors concludes that MRI of the shoulder joint in its instability should be used appropriately as it may early reveal changes in the articular osseous, cartilaginous, and soft tissues, which is useful in diagnosing and choosing a treatment.  相似文献   

12.
Several mutations and atypical splice variants of WISP3 (CCN6) have been linked to connective tissue disorders and different forms of malignancies. Functional studies have suggested that WISP3 contributes to tissue maintenance/homeostasis. The precise molecular mechanism of WISP3 function in different cell types, however, remains unresolved. The present study was conducted to investigate the potential impact of WISP3 on the accumulation of reactive oxygen species (ROS) and oxidative stress, which are central to cell/tissue maintenance. Our experimental results suggest that WISP3 regulates the accumulation of cellular ROS, and mutations in WISP3 or loss of expression of WISP3 compromise this function.  相似文献   

13.
Osteoarthritis is characterized by a progressive degradation of articular cartilage leading to loss of joint function. The molecular mechanisms regulating pathogenesis and progression of osteoarthritis are poorly understood. Remarkably, some characteristics of this joint disease resemble chondrocyte differentiation processes during skeletal development by endochondral ossification. In healthy articular cartilage, chondrocytes resist proliferation and terminal differentiation. By contrast, chondrocytes in diseased cartilage progressively proliferate and develop hypertrophy. Moreover, vascularization and focal calcification of joint cartilage are initiated. Signaling molecules that regulate chondrocyte activities in both growth cartilage and permanent articular cartilage during osteoarthritis are thus interesting targets for disease-modifying osteoarthritis therapies.  相似文献   

14.
Osteoarthritis is a condition caused in part by injury, loss of cartilage structure and function, and an imbalance in inflammatory and anti-inflammatory pathways. It primarily affects the articular cartilage and subchondral bone of synovial joints and results in joint failure, leading to pain upon weight bearing including walking and standing. There is no cure for osteoarthritis, as it is very difficult to restore the cartilage once it is destroyed. The goals of treatment are to relieve pain, maintain or improve joint mobility, increase the strength of the joints and minimize the disabling effects of the disease. Recent studies have shown an association between dietary polyphenols and the prevention of osteoarthritis-related musculoskeletal inflammation. This review discusses the effects of commonly consumed polyphenols, including curcumin, epigallocatechin gallate and green tea extract, resveratrol, nobiletin and citrus fruits, pomegranate, as well as genistein and soy protein, on osteoarthritis with an emphasis on molecular antiosteoarthritic mechanisms.  相似文献   

15.
16.
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive loss of articular cartilage, subchondral bone sclerosis, osteophyte formation, and synovial inflammation, causing substantial physical disability, impaired quality of life, and significant health care utilization. Traditionally, non-steroidal anti-inflammatory drugs (NSAIDs), including selective cyclooxygenase (COX)-2 inhibitors, have been used to treat pain and inflammation in OA. Besides its anti-inflammatory properties, evidence is accumulating that celecoxib, one of the selective COX-2 inhibitors, has additional disease-modifying effects. Celecoxib was shown to affect all structures involved in OA pathogenesis: cartilage, bone, and synovium. As well as COX-2 inhibition, evidence indicates that celecoxib also modulates COX-2-independent signal transduction pathways. These findings raise the question of whether celecoxib, and potentially other coxibs, is more than just an anti-inflammatory and analgesic drug. Can celecoxib be considered a disease-modifying osteoarthritic drug? In this review, these direct effects of celecoxib on cartilage, bone, and synoviocytes in OA treatment are discussed.  相似文献   

17.
目的:分析右归丸对膝骨性关节炎(KOA)大鼠Wnt信号通路相关因子表达的影响,探讨右归丸对KOA大鼠的保护机制。方法:SPF级SD大鼠60只,按照体重法随机分为假手术组、模型组、硫酸氨基葡萄糖组、右归丸高、中、低剂量组(n=10)。采用改良Hulth法复制膝骨关节炎大鼠模型。右归丸高中低剂量组分别按20、10、5 g/kg灌服相应的药物,硫酸氨基葡萄糖组按0.17 g/kg灌服硫酸氨基葡萄糖,假手术组和模型组灌服等体积的生理盐水,干预8周。末次给药后摘取膝关节,通过膝关节病理切片观察各组大鼠软骨组织病理改变;采用RT-PCR法对各组大鼠软骨组织DKK1、WISP1、Wnt1、β-catenin和LRP5 mRNA的表达水平进行对比分析;通过Western blot法检测各组大鼠软骨组织DKK1、WISP1、Wnt1、LRP5和β-catenin的蛋白质含量的变化。结果:与假手术组比较,模型组大鼠关节软骨受损严重,Mankin评分明显升高(P<0.05);DKK1 mRNA表达水平和蛋白质表达水平明显降低(P<0.05);WISP1、Wnt1、β-catenin、LRP5 mRNA表达水平及蛋白质表达水平明显升高(P<0.05)。与模型组比较,右归丸高剂量组和硫酸氨基葡萄糖组关节软骨病变明显减轻;Mankin评分明显减轻(P<0.05);大鼠软骨组织中DKK1 mRNA表达水平和蛋白表达水平明显升高,WISP1、Wnt1、β-catenin、LRP5 mRNA及蛋白表达水平显著降低(P<0.05)。结论:右归丸通过抑制Wnt信号通路中WISP1、Wnt1、β-catenin、LRP5的表达,促进DKK1细胞因子的表达,发挥对KOA的保护作用。  相似文献   

18.
Whilst the growing global prevalence of diabetes mellitus is a major healthcare problem, the exact pathophysiology of insulin resistance leading to diabetes mellitus remains unclear. Studies have confirmed that increased adiposity is linked to lower insulin sensitivity through the expression and release of adipocyte-derived proteins such as adipokines. Wingless-type (Wnt) inducible signaling pathway protein-1 (WISP1) is a newly identified adipokine that has important roles in many molecular pathways and cellular events, with the suggestion that WISP1 adipokine is closely correlated to the progression of insulin resistance. Studies have shown that circulatory levels of WISP adipokine are higher in obese patients accompanied with increased insulin resistance. However, the exact role of WISP1 adipokine in the induction of insulin resistance is not completely understood. In this review, we detail the latest evidence showing that the WIPS1 adipokine impairs glucose homeostasis and induces diabetes mellitus.  相似文献   

19.
Fabry disease     
Fabry disease (FD) is a progressive, X-linked inherited disorder of glycosphingolipid metabolism due to deficient or absent lysosomal α-galactosidase A activity. FD is pan-ethnic and the reported annual incidence of 1 in 100,000 may underestimate the true prevalence of the disease. Classically affected hemizygous males, with no residual α-galactosidase A activity may display all the characteristic neurological (pain), cutaneous (angiokeratoma), renal (proteinuria, kidney failure), cardiovascular (cardiomyopathy, arrhythmia), cochleo-vestibular and cerebrovascular (transient ischemic attacks, strokes) signs of the disease while heterozygous females have symptoms ranging from very mild to severe. Deficient activity of lysosomal α-galactosidase A results in progressive accumulation of globotriaosylceramide within lysosomes, believed to trigger a cascade of cellular events. Demonstration of marked α-galactosidase A deficiency is the definitive method for the diagnosis of hemizygous males. Enzyme analysis may occasionnally help to detect heterozygotes but is often inconclusive due to random X-chromosomal inactivation so that molecular testing (genotyping) of females is mandatory. In childhood, other possible causes of pain such as rheumatoid arthritis and 'growing pains' must be ruled out. In adulthood, multiple sclerosis is sometimes considered. Prenatal diagnosis, available by determination of enzyme activity or DNA testing in chorionic villi or cultured amniotic cells is, for ethical reasons, only considered in male fetuses. Pre-implantation diagnosis is possible. The existence of atypical variants and the availability of a specific therapy singularly complicate genetic counseling. A disease-specific therapeutic option - enzyme replacement therapy using recombinant human α-galactosidase A - has been recently introduced and its long term outcome is currently still being investigated. Conventional management consists of pain relief with analgesic drugs, nephroprotection (angiotensin converting enzyme inhibitors and angiotensin receptors blockers) and antiarrhythmic agents, whereas dialysis or renal transplantation are available for patients experiencing end-stage renal failure. With age, progressive damage to vital organ systems develops and at some point, organs may start to fail in functioning. End-stage renal disease and life-threatening cardiovascular or cerebrovascular complications limit life-expectancy of untreated males and females with reductions of 20 and 10 years, respectively, as compared to the general population. While there is increasing evidence that long-term enzyme therapy can halt disease progression, the importance of adjunctive therapies should be emphasized and the possibility of developing an oral therapy drives research forward into active site specific chaperones.  相似文献   

20.
The anthracycline antibiotic doxorubicin (DOX) is a potent cancer chemotherapeutic agent that exerts both acute and chronic cardiotoxicity. Here we show that in adult mouse cardiomyocytes, DOX activates (i) the pro-apoptotic p53, (ii) p38MAPK and JNK, (iii) Bax translocation, (iv) cytochrome c release, and (v) caspase 3. Further, it (vi) inhibits expression of anti-apoptotic Akt, Bcl-2 and Bcl-xL, and (vii) induces internucleosomal degradation and cell death. WNT1-inducible signaling pathway protein-1 (WISP1), a CCN family member and a matricellular protein, inhibits DOX-mediated cardiomyocyte death. WISP1 inhibits DOX-induced p53 activation, p38 MAPK and JNK phosphorylation, Bax translocation to mitochondria, and cytochrome c release into cytoplasm. Additionally, WISP1 reverses DOX-induced suppression of Bcl-2 and Bcl-xL expression and Akt inhibition. The pro-survival effects of WISP1 were recapitulated by the forced expression of mutant p53, wild-type Bcl-2, wild-type Bcl-xL, or constitutively active Akt prior to DOX treatment. WISP1 also induces the pro-survival factor Survivin via PI3K/Akt signaling. Overexpression of wild-type, but not mutant Survivin, blunts DOX cytotoxicity. Further, WISP1 stimulates PI3K–Akt-dependent GSK3β phosphorylation and β-catenin nuclear translocation. Importantly, WISP1 induces its own expression. Together, these results provide important insights into the cytoprotective effects of WISP1 in cardiomyocytes, and suggest a potential therapeutic role for WISP1 in DOX-induced cardiotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号