首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huntingtin protein (Htt), whose mutation causes Huntington's disease (HD), interacts with large numbers of proteins that participate in diverse cellular pathways. This observation indicates that wild-type Htt is involved in various cellular processes and that the mutated Htt alters these processes in HD. The roles of these interacting proteins in HD pathogenesis remain largely unknown. In the present review, we present evidence that Htt-interacting protein 1 (HIP-1), an endocytic protein, together with its interacting partner HIPPI, regulates apoptosis and gene expression, both processes being implicated in HD. Further studies are necessary to establish whether the HIPPI-HIP-1 complex or other interacting partners of HIPPI regulate apoptosis and gene expression that are relevant to HD.  相似文献   

2.
Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis.  相似文献   

3.
4.
While the role of the mutated Huntington's disease (HD) protein in the pathogenesis of HD has been the focus of intensive investigation, the normal protein has received less attention. Nonetheless, the wild-type HD protein appears to be essential for embryogenesis, since deletion of the HD gene in mice results in early embryonic lethality. This early lethality is due to a critical role the HD protein, called huntingtin (Htt), plays in extraembryonic membrane function, presumably in vesicular transport of nutrients. Studies of mutant mice expressing low levels of Htt and of chimeric mice generated by blastocyst injection of Hdh-/- embryonic stem cells show that wildtype Htt plays an important role later in development as well, specifically in forebrain formation. Moreover, various lines of study suggest that normal Htt is also critical for survival of neurons in the adult forebrain. The observation that Htt plays its key developmental and survival roles in those brain areas most affected in HD raises the possibility that a subtle loss of function on the part of the mutant protein or a sequestering of wild-type Htt by mutant Htt may contribute to HD pathogenesis. Regardless of whether this is so, the prosurvival role of Htt suggests that HD therapies that block production of both wild-type and mutant Htt may themselves be harmful.  相似文献   

5.
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that results from a CAG (glutamine) trinucleotide expansion in exon 1 of huntingtin (Htt). The aggregation of mutant Htt has been implicated in the progression of HD. The earliest degeneration occurs in the striatum. To identify proteins critical for the progression of HD, we applied acid-cleavable ICAT technology to quantitatively determine changes in protein expressions in the striatum of a transgenic HD mouse model (R6/2). The cysteine residues of striatal proteins from HD and wild-type mice were labeled, respectively, with the heavy and light forms of the ICAT reagents. Samples were trypsinized, uncovered by avidin affinity chromatography, and analyzed by nano-LC-MS/MS. Western blot analyses were used to confirm and to calibrate the ICAT ratios. Linear regression was used to uncover a group of proteins that exhibited consistent changes. In two independent ICAT experiments, we identified 427 cysteine-containing striatal proteins among which approximately 66% (203 proteins) were detected in both ICAT experiments. Approximately two-thirds of proteins identified in each ICAT experiment were detected in both ICAT experiments. In total, 68 proteins with altered expressions in HD mice were identified. Elevated expressions of two down-regulated proteins (14-3-3sigma and FKBP12) effectively reduced Htt aggregates in a striatal cell line, supporting the functional relevance of the above findings. Collectively by using a well defined protocol for data analysis, large scale comparisons of protein expressions by ICAT can be reliable and can provide valuable clues for identifying proteins critical for pathophysiological functions.  相似文献   

6.
7.
8.
9.
Huntington's disease (HD) is caused by a polyglutamine expansion in the protein huntingtin (Htt). Several studies suggest that Htt and huntingtin associated protein 1 (HAP1) participate in intracellular trafficking and that polyglutamine expansion affects vesicular transport. Understanding the function of HAP1 and its related proteins could help elucidate the pathogenesis of HD. The present review focuses on HAP1, which has proved to be involved in intracellular trafficking. Unlike huntingtin, which is expressed ubiquitously throughout the brain and body, HAP1 is enriched in neurons, suggesting that its dysfunction could contribute to the selective neuropathology in HD. We discuss recent evidence for the involvement of HAP1 and its binding proteins in potential functions.  相似文献   

10.
Huntington Disease (HD) is caused by an abnormal expansion of polyQ tract in the protein named huntingtin (Htt). HD pathology is featured by accumulation and aggregation of mutant Htt in striatal and cortical neurons. Aberrant Htt degradation is implicated in HD pathogenesis. The aim of this study was to investigate the regulatory role of chaperone-mediated autophagy (CMA) components, heat shock protein cognate 70 (Hsc70) and lysosome-associated protein 2A (LAMP-2A) in degradation of Htt fragment 1-552aa (Htt-552). A cell model of HD was produced by overexpression of Htt-552 with adenovirus. The involvement of CMA components in degradation of Htt-552 was determined with over-expression or silencing of Hsc70 and LAMP-2A. The results confirmed previous reports that both macroautophagy and CMA were involved in degradation of Htt-552. Changing the levels of CMA-related proteins affected the accumulation of Htt-552. The lysosomal binding and luminal transport of Htt-552 was demonstrated by incubation of Htt-552 with isolated lysosomes. Expansion of the polyQ tract in Htt-552 impaired its uptake and degradation by lysosomes. Mutation of putative KFERQ motif in wild-type Htt-552 interfered with interactions between Htt-552 and Hsc70. Endogenous Hsc70 and LAMP-2A interacted with exogenously expressed Htt-552. Modulating the levels of CMA related proteins degraded endogenous full-length Htt. These studies suggest that Hsc70 and LAMP-2A through CMA play a role in the clearance of Htt and suggest a novel strategy to target the degradation of mutant Htt.  相似文献   

11.
12.
Huntington''s disease (HD) is the most common inherited neurodegenerative disease and is characterized by uncontrolled excessive motor movements and cognitive and emotional deficits. The mutation responsible for HD leads to an abnormally long polyglutamine (polyQ) expansion in the huntingtin (Htt) protein, which confers one or more toxic functions to mutant Htt leading to neurodegeneration. The polyQ expansion makes Htt prone to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins tend to slow disease progression in HD models. This article will focus on HD and the evidence that it is a conformational disease.  相似文献   

13.
Nuclear relocation of normal huntingtin   总被引:3,自引:1,他引:2  
In Huntington's Disease (HD), the huntingtin protein (Htt) includes an expanded polyglutamine domain. Since mutant Htt concentrates in the nucleus of affected neurons, we have inquired whether normal Htt (Q16−23) is also able to access the nucleus. We observe that a major pool of normal full-length Htt of HeLa cells is anchored to endosomes and also detect RNase-sensitive nuclear foci which include a 70-kDa N-terminal Htt fragment. Agents which damage DNA trigger caspase-3-dependent cleavage of Htt and dramatically relocate the 70 kDa fragment to the nucleoplasm. Considering that polyglutamine tracts stimulate caspase activation, mutant Htt is therefore poised to enter the nucleus. These considerations help rationalize the nuclear accumulation of Htt which is characteristic of HD and provide a first example of involvement of caspase cleavage in release of membrane-bound proteins which subsequently enter the nucleus.  相似文献   

14.
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder resulting in selective neuronal loss and dysfunction in the striatum and cortex. The molecular pathways leading to the selectivity of neuronal cell death in HD are poorly understood. Proteolytic processing of full-length mutant huntingtin (Htt) and subsequent events may play an important role in the selective neuronal cell death found in this disease. Despite the identification of Htt as a substrate for caspases, it is not known which caspase(s) cleaves Htt in vivo or whether regional expression of caspases contribute to selective neuronal cells loss. Here, we evaluate whether specific caspases are involved in cell death induced by mutant Htt and if this correlates with our recent finding that Htt is cleaved in vivo at the caspase consensus site 552. We find that caspase-2 cleaves Htt selectively at amino acid 552. Further, Htt recruits caspase-2 into an apoptosome-like complex. Binding of caspase-2 to Htt is polyglutamine repeat-length dependent, and therefore may serve as a critical initiation step in HD cell death. This hypothesis is supported by the requirement of caspase-2 for the death of mouse primary striatal cells derived from HD transgenic mice expressing full-length Htt (YAC72). Expression of catalytically inactive (dominant-negative) forms of caspase-2, caspase-7, and to some extent caspase-6, reduced the cell death of YAC72 primary striatal cells, while the catalytically inactive forms of caspase-3, -8, and -9 did not. Histological analysis of post-mortem human brain tissue and YAC72 mice revealed activation of caspases and enhanced caspase-2 immunoreactivity in medium spiny neurons of the striatum and the cortical projection neurons when compared to controls. Further, upregulation of caspase-2 correlates directly with decreased levels of brain-derived neurotrophic factor in the cortex and striatum of 3-month YAC72 transgenic mice and therefore suggests that these changes are early events in HD pathogenesis. These data support the involvement of caspase-2 in the selective neuronal cell death associated with HD in the striatum and cortex.  相似文献   

15.
Huntington disease (HD) is an inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the protein Huntingtin (Htt). Currently, no cure is available for HD. The mechanisms by which mutant Htt causes neuronal dysfunction and degeneration remain to be fully elucidated. Nevertheless, mitochondrial dysfunction has been suggested as a key event mediating mutant Htt-induced neurotoxicity because neurons are energy-demanding and particularly susceptible to energy deficits and oxidative stress. SIRT3, a member of sirtuin family, is localized to mitochondria and has been implicated in energy metabolism. Notably, we found that cells expressing mutant Htt displayed reduced SIRT3 levels. trans-(-)-ε-Viniferin (viniferin), a natural product among our 22 collected naturally occurring and semisynthetic stilbenic compounds, significantly attenuated mutant Htt-induced depletion of SIRT3 and protected cells from mutant Htt. We demonstrate that viniferin decreases levels of reactive oxygen species and prevents loss of mitochondrial membrane potential in cells expressing mutant Htt. Expression of mutant Htt results in decreased deacetylase activity of SIRT3 and further leads to reduction in cellular NAD(+) levels and mitochondrial biogenesis in cells. Viniferin activates AMP-activated kinase and enhances mitochondrial biogenesis. Knockdown of SIRT3 significantly inhibited viniferin-mediated AMP-activated kinase activation and diminished the neuroprotective effects of viniferin, suggesting that SIRT3 mediates the neuroprotection of viniferin. In conclusion, we establish a novel role for mitochondrial SIRT3 in HD pathogenesis and discovered a natural product that has potent neuroprotection in HD models. Our results suggest that increasing mitochondrial SIRT3 might be considered as a new therapeutic approach to counteract HD, as well as other neurodegenerative diseases with similar mechanisms.  相似文献   

16.
Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD.  相似文献   

17.
Huntington disease (HD) is caused by a polyglutamine expansion in the protein huntingtin (Htt). Several studies suggest that Htt and huntingtin associated protein 1 (HAP1) participate in intracellular trafficking and that polyglutamine expansion affects vesicular transport. Understanding the function of HAP1 and its related proteins could help elucidate the pathogenesis of HD. The present review focuses on HAP1, which has proved to be involved in intracellular trafficking. Unlike huntingtin, which is expressed ubiquitously throughout the brain and body, HAP1 is enriched in neurons, suggesting that its dysfunction could contribute to the selective neuropathology in HD. We discuss recent evidence for the involvement of HAP1 and its binding proteins in potential functions.Key words: HAP1, Huntington disease, huntingtin, transport  相似文献   

18.
The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.  相似文献   

19.
20.
Huntingtin (Htt) is a protein with a polyglutamine stretch in the N-terminus and expansion of the polyglutamine stretch causes Huntington's disease (HD). Htt is a multiple domain protein whose function has not been well characterized. Previous reports have shown, however, that post-translational modifications of Htt such as phosphorylation and acetylation modulate mutant Htt toxicity, localization, and vesicular trafficking. Lysine acetylation of Htt is of particular importance in HD as this modification regulates disease progression and toxicity. Treatment of mouse models with histone deacetylase inhibitors ameliorates HD-like symptoms and alterations in acetylation of Htt promotes clearance of the protein. Given the importance of acetylation in HD and other diseases, we focused on the systematic identification of lysine acetylation sites in Htt23Q (1-612) in a cell culture model using mass spectrometry. Myc-tagged Htt23Q (1-612) overexpressed in the HEK 293T cell line was immunoprecipitated, separated by SDS-PAGE, digested and subjected to high performance liquid chromatography tandem MS analysis. Five lysine acetylation sites were identified, including three novel sites Lys-178, Lys-236, Lys-345 and two previously described sites Lys-9 and Lys-444. Antibodies specific to three of the Htt acetylation sites were produced and confirmed the acetylation sites in Htt. A multiple reaction monitoring MS assay was developed to compare quantitatively the Lys-178 acetylation level between wild-type Htt23Q and mutant Htt148Q (1-612). This report represents the first comprehensive mapping of lysine acetylation sites in N-terminal region of Htt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号