首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Sibly RM  Curnow RN 《Heredity》2011,107(2):167-173
Altruism and selfishness are 30-50% heritable in man in both Western and non-Western populations. This genetically based variation in altruism and selfishness requires explanation. In non-human animals, altruism is generally directed towards relatives, and satisfies the condition known as Hamilton's rule. This nepotistic altruism evolves under natural selection only if the ratio of the benefit of receiving help to the cost of giving it exceeds a value that depends on the relatedness of the individuals involved. Standard analyses assume that the benefit provided by each individual is the same but it is plausible in some cases that as more individuals contribute, help is subject to diminishing returns. We analyse this situation using a single-locus two-allele model of selection in a diploid population with the altruistic allele dominant to the selfish allele. The analysis requires calculation of the relationship between the fitnesses of the genotypes and the frequencies of the genes. The fitnesses vary not only with the genotype of the individual but also with the distribution of phenotypes amongst the sibs of the individual and this depends on the genotypes of his parents. These calculations are not possible by direct fitness or ESS methods but are possible using population genetics. Our analysis shows that diminishing returns change the operation of natural selection and the outcome can now be a stable equilibrium between altruistic and selfish alleles rather than the elimination of one allele or the other. We thus provide a plausible genetic model of kin selection that leads to the stable coexistence in the same population of both altruistic and selfish individuals. This may explain reported genetic variation in altruism in man.  相似文献   

2.
I examine the relationship between evolutionary definitions of altruism that are based on fitness effects and psychological definitions that are based on the motives of the actor. I show that evolutionary altruism can be motivated by proximate mechanisms that are psychologically either altruistic or selfish. I also show that evolutionary definitions do rely upon motives as a metaphor in which the outcome of natural selection is compared to the decisions of a psychologically selfish (or altruistic) individual. Ignoring the precise nature of both psychological and evolutionary definitions has obscured many important issues, including the biological roots of psychological altruism.  相似文献   

3.
Optimization of performance in collective systems often requires altruism. The emergence and stabilization of altruistic behaviors are difficult to achieve because the agents incur a cost when behaving altruistically. In this paper, we propose a biologically inspired strategy to learn stable altruistic behaviors in artificial multi-agent systems, namely reciprocal altruism. This strategy in conjunction with learning capabilities make altruistic agents cooperate only between themselves, thus preventing their exploitation by selfish agents, if future benefits are greater than the current cost of altruistic acts. Our multi-agent system is made up of agents with a behavior-based architecture. Agents learn the most suitable cooperative strategy for different environments by means of a reinforcement learning algorithm. Each agent receives a reinforcement signal that only measures its individual performance. Simulation results show how the multi-agent system learns stable altruistic behaviors, so achieving optimal (or near-to-optimal) performances in unknown and changing environments. Received: 1 August 1997 / Accepted in revised form: 28 November 1997  相似文献   

4.
Views on the evolution of altruism based upon multilevel selection on structured populations pay little attention to the difference between fortuitous and deliberate processes leading to assortative grouping. Altruism may evolve when assortative grouping is fortuitously produced by forces external to the organism. But when it is deliberately produced by the same proximate mechanism that controls altruistic responses, as in humans, exploitation of altruists by selfish individuals is unlikely and altruism evolves as an individually advantageous trait. Groups formed with altruists of this sort are special, because they are not affected by subversion from within. A synergistic process where altruism is selected both at the individual and at the group level can take place.  相似文献   

5.
The question of how altruism can evolve despite its local disadvantage to selfishness has produced a wealth of theoretical and empirical research capturing the attention of scientists across disciplines for decades. One feature that has remained consistent through this outpouring of knowledge has been that researchers have looked to the altruists themselves for mechanisms by which altruism can curtail selfishness. An alternative perspective may be that just as altruists want to limit selfishness in the population, so may the selfish individuals themselves. These alternative perspectives have been most evident in the fairly recent development of enforcement strategies. Punishment can effectively limit selfishness in the population, but it is not free. Thus, when punishment evolves among altruists, the double costs of exploitation from cheaters and punishment make the evolution of punishment problematic. Here we show that punishment can more readily invade selfish populations when associated with selfishness, whereas altruistic punishers cannot. Thereafter, the establishment of altruism because of enforcement by selfish punishers provides the ideal invasion conditions for altruistic punishment, effectively creating a transition of punishment from selfishness to altruistic. Thus, from chaotic beginnings, a little hypocrisy may go a long way in the evolution and maintenance of altruism.  相似文献   

6.
Genetical models of the evolution of reciprocal altruism (as distinct from cooperation, mutualism, or nepotism) have difficulty explaining the initial establishment of an altruist gene in a selfish deme. Though potential mechanisms have been suggested, there is an alternative: much “altruistic” behavior may in fact be purely selfish in origin and consequently reciprocity need not be invoked to provide a selective benefit to the actor. Sharing and helping are fundamentally different behavior categories and should not be confused. Patterns of resource sharing in chimpanzees correspond to predictions made by a selfish model but not to those of a reciprocal altruism model, and many observations of human gift exchange are consistent with the selfish, but not the altruistic, model. This suggests that presumed hominid meat exchange may have been the result of competition, not altruism or even cooperation, and that evolutionary models of “altruistic” behavior should be treated with caution.  相似文献   

7.
The adaptive dynamics of altruism in spatially heterogeneous populations   总被引:4,自引:0,他引:4  
Abstract.— We study the spatial adaptive dynamics of a continuous trait that measures individual investment in altruism. Our study is based on an ecological model of a spatially heterogeneous population from which we derive an appropriate measure of fitness. The analysis of this fitness measure uncovers three different selective processes controlling the evolution of altruism: the direct physiological cost, the indirect genetic benefits of cooperative interactions, and the indirect genetic costs of competition for space. In our model, habitat structure and a continuous life cycle makes the cost of competing for space with relatives negligible. Our study yields a classification of adaptive patterns of altruism according to the shape of the costs of altruism (with decelerating, linear, or accelerating dependence on the investment in altruism). The invasion of altruism occurs readily in species with accelerating costs, but large mutations are critical for altruism to evolve in selfish species with decelerating costs. Strict selfishness is maintained by natural selection only under very restricted conditions. In species with rapidly accelerating costs, adaptation leads to an evolutionarily stable rate of investment in altruism that decreases smoothly with the level of mobility. A rather different adaptive pattern emerges in species with slowly accelerating costs: high altruism evolves at low mobility, whereas a quasi-selfish state is promoted in more mobile species. The high adaptive level of altruism can be predicted solely from habitat connectedness and physiological parameters that characterize the pattern of cost. We also show that environmental changes that cause increased mobility in those highly altruistic species can beget selection-driven self-extinction, which may contribute to the rarity of social species.  相似文献   

8.
Altruism is generally understood to be behavior that benefits others at a personal cost to the behaving individual. However, within evolutionary biology, different authors have interpreted the concept of altruism differently, leading to dissimilar predictions about the evolution of altruistic behavior. Generally, different interpretations diverge on which party receives the benefit from altruism and on how the cost of altruism is assessed. Using a simple trait-group framework, we delineate the assumptions underlying different interpretations and show how they relate to one another. We feel that a thorough examination of the connections between interpretations not only reveals why different authors have arrived at disparate conclusions about altruism, but also illuminates the conditions that are likely to favor the evolution of altruism.  相似文献   

9.
10.
Altruism can evolve through assortation if the selfish advantage of egoistic individuals is outcompeted by the benefits of mutual cooperation between altruists. This selection process is possible if (a) individuals can distinguish altruists from egoists and (b) altruists cooperate electively with other altruists, leaving egoists no chance but to mingle with each other. This study investigates whether these two conditions are fulfilled in a natural setting. One hundred twenty-two students of six secondary school classes (age 10 to 19 years) played an anonymous dictator game, which functioned as a measure of altruism. Afterwards and unannounced, the students had to estimate their classmates' decisions and did so better than chance. Sociometry revealed that the accuracy of predictions depended on social closeness. Friends and disliked classmates were judged more accurately than liked classmates or those met with indifference. Moreover, altruists were friends with more altruistic persons than were egoists. The results confirm the existence of the two prerequisites for the evolution of altruism through assortation: the predictability of altruistic behavior and the association of altruists.  相似文献   

11.
Current work on cooperation is focused on the theory of reciprocal altruism. However, reciprocity is just one way of getting a return on an investment in altruism and is difficult to apply to many examples. Reciprocity theory addresses how animals respond dynamically to others so as to cooperate without being exploited. I discuss how introducing differences in individual generosity together with partner choice into models of reciprocity can lead to an escalation in altruistic behaviour. Individuals may compete for the most altruistic partners and non-altruists may become ostracized. I refer to this phenomenon as competitive altruism and propose that it can represent a move away from the dynamic responsiveness of reciprocity. Altruism may be rewarded in kind, but rewards may be indirectly accrued or may not involve the return of altruism at all, for example if altruists tend to be chosen as mates. This variety makes the idea of competitive altruism relevant to behaviours which cannot be explained by reciprocity. I consider whether altruism might act as a signal of quality, as proposed by the handicap principle. I suggest that altruistic acts could make particularly effective signals because of the inherent benefits to receivers. I consider how reciprocity and competitive altruism are related and how they may be distinguished.  相似文献   

12.
Kin selection theory (KS) is widely invoked to account for the preferential treatment of kin—nepotism—in primate societies. Because this idea is so pervasive the role of KS is often unquestioned and optional mechanisms are often ignored. I first examine the potential role of some other nepotism-generating mechanisms by concentrating on the effect of the proximity correlate of matrilineal kinship. This correlate of kinship may bias the development of mutually selfish interactions among relatives—kin-biased mutualism—and that of reciprocally altruistic interactions—kin-biased reciprocal altruism—two mechanisms that have been given little weight compared to KS and whose impact on the evolution of nepotism is therefore unknown. However, these two options to KS cannot account for the existence of unilaterally altruistic interactions among kin, which provide, therefore, the best type of evidence to test KS. But such evidence is difficult to obtain because many behaviors considered altruistic may in fact be selfish, and because kin altruism is seldom unilateral; it is most often bilateral, as expected by reciprocal altruism theory. For these reasons, one should be extremely cautious before equating nepotism exclusively with KS. Next, I examine the predictions of KS regarding the deployment of altruism according to degree of kinship by considering, in addition to the variables of Hamilton's equation, the duration of behaviors, the size of kin classes and their differential availability. In general, altruism is expected to be allocated at a fairly constant rate among kin categories and to drop markedly past the degree of relatedness beyond which altruism is no more profitable. Very little data allow one to test conclusively this prediction, as well as some other significant predictions. Overall, there is ample evidence for the role of KS in shaping mother-offspring interactions in various areas. But the evidence for kin-selected altruism beyond the mother-offspring bond (r < 0.5), though qualitatively solid, is much less abundant. Kin altruism drops markedly beyond r = 0.25 (half-siblings and grandmother-grandoffspring dyads).  相似文献   

13.
Summary Several mechanisms have been proposed for group selection, to account for the evolution of altruistic traits. One type, Neighbourhood models, suggests that individuals react with those immediately around them, but with no recognition mechanism. The organization of plant populations seems especially favorable for this type of selection. The possibility of Neighbourhood selection was investigated by simulating a plant population. It was possible for an altruistic trait to evolve, though only under restricted conditions. The main requirement was gene flow only by very restricted pollen dispersal, and a high benefit : cost ratio in the altruistic relationship. Under conditions favourable for such evolution, the starting frequency of the allele, the initial pattern, and the population size, had little effect. Inbreeding tended to prevent the increase of the altruism allele, though this depended on the mechanism of selfing. Known ecological features of plants are discussed that could be considered altruistic and hence require some form of group selection for their evolution, and whether the benefit : cost requirements are likely to be met. Neighbourhood models of group selection are a possibility in plant populations, and we therefore cannot exclude the possibility of altruism in plants. However, Neighbourhood selection is weak force, unlikely to be effective in the face of opposing individual selection. It may be more important as reinforcement of individual selection.  相似文献   

14.
Self-protection tendencies allowed our human ancestors to survive and thrive. In three experiments, we find that individuals who have a salient self-protection motive are more altruistic to others, such as by helping them out or offering them more money in the dictator game paradigm. Self-protecting individuals desire to “bind together” as there is “safety in numbers”, and being altruistic to others should be one (but not the only) way to achieve this goal. Consistent with this reasoning, we find across three behavioral experiments using both non-monetary (Experiment 1) and monetary altruistic contexts (Experiments 2–3) that self-protecting individuals are more altruistic when the altruism is not anonymous (Experiment 1) and when they have the reasonable expectation of future interaction with the recipient (Experiment 2), both of which are situations that should increase affiliation. The effect attenuates when altruism does not help self-protecting individuals, such as when money is donated to impersonal organizations rather than individuals (Experiment 3). We finally discuss the theoretical contributions as well as limitations of our work.  相似文献   

15.
There is evidence in the literature that non-verbal physical features are used as cues for a propensity to cooperate. However, further studies of the human ability to visually detect cooperativeness are required. In particular, the existence of static facial cues of altruism remains questionable. Moreover, an investigation of both sex differences and cross-cultural applicability with respect to altruism detection skills is crucial in the context of the evolution of human cooperation. In this study, we used both a public good game and a charitable contribution to assess the cooperativeness of 156 men and 172 women in rural Senegal and took facial photographs of these individuals. The second portion of the study was conducted in France. In total, 194 men and 171 women were asked to distinguish the most and least selfish individual from a series of 80 pairs of Senegalese facial photographs, each pair consisting of the highest and the lowest contributor from a group in the public good game. Using mixed modeling techniques, we controlled for facial masculinity, age and socio-economic status. For male pairs, both male and female French raters were able to identify more often than by chance which individual made the smallest contribution to the public good in each group; however, detection was not successful with female faces. These results suggest that sex-specific traits are involved and that only male facial traits indicating cooperative skills are, at least inter-culturally, readable. The specific facial traits involved are investigated. However, the charitable contribution was not correlated with the contribution to the public good, and further work is necessary to identify which specific altruistic traits are detectable and to assess the generality of these results.  相似文献   

16.
ABSTRACT: BACKGROUND: Altruistic behavior is defined as helping others at a cost to oneself and a lowered fitness. The lower fitness implies that altruists should be selected against, which is in contradiction with their widespread presence is nature. Present models of selection for altruism (kin or multilevel) show that altruistic behaviors can have 'hidden' advantages if the 'common good' produced by altruists is restricted to some related or unrelated groups. These models are mostly deterministic, or assume a frequency dependent fitness. RESULTS: Evolutionary dynamics is a competition between deterministic selection pressure and stochastic events due to random sampling from one generation to the next. We show here that an altruistic allele extending the carrying capacity of the habitat can win by increasing the random drift of "selfish" alleles. In other terms, the fixation probability of altruistic genes can be higher than those of a selfish ones, even though altruists have a smaller fitness. Moreover when populations are geographically structured, the altruists advantage can be highly amplified and the fixation probability of selfish genes can tend toward zero. The above results are obtained both by numerical and analytical calculations. Analytical results are obtained in the limit of large populations. CONCLUSIONS: The theory we present does not involve kin or multilevel selection, but is based on the existence of random drift in variable size populations. The model is a generalization of the original Fisher-Wright and Moran models where the carrying capacity depends on the number of altruists.  相似文献   

17.
Kin selection theory predicts that altruistic behaviors, those that decrease the fitness of the individual performing the behavior but increase the fitness of the recipient, can increase in frequency if the individuals interacting are closely related. Several studies have shown that inbreeding therefore generally increases the effectiveness of kin selection when fitnesses are linear, additive functions of the number of altruists in the family, although with extreme forms of altruism, inbreeding can actually retard the evolution of altruism. These models assume that a constant proportion of the population mates at random and a constant proportion practices some form of inbreeding. In order to investigate the effect of inbreeding on the evolution of altruistic behavior when the mating structure is allowed to evolve, we examined a two-locus model by computer simulation of a diploid case and illustrated the important qualitative features by mathematical analysis of a haploid case. One locus determines an individual's propensity to perform altruistic social behavior and the second locus determines the probability that an individual will mate within its sibship. We assumed positive selection for altruism and no direct selection at the inbreeding locus. We observed that the altruistic allele and the inbreeding allele become positively associated, even when the initial conditions of the model assume independence between these loci. This linkage disequilibrium becomes established, because the altruistic allele increases more rapidly in the inbreeding segment of the population. This association subsequently results in indirect selection on the inbreeding locus. However, the dynamics of this model go beyond a simple "hitch-hiking" effect, because high levels of altruism lead to increased inbreeding, and high degrees of inbreeding accelerate the rate of change of the altruistic allele in the entire population. Thus, the dynamics of this model are similar to those of "runaway" sexual selection, with gene frequency change at the two loci interactively causing rapid evolutionary change.  相似文献   

18.
Why are individuals altruistic to their friends? Theory suggests that individual, relationship and network factors will all influence the levels of altruism; but to date, the effects of social network structure have received relatively little attention. The present study uses a novel correlational design to test the prediction that an individual will be more altruistic to friends who are well-connected to the individual''s other friends. The result shows that, as predicted, even when controlling for a range of individual and relationship factors, the network factor (number of connections) makes a significant contribution to altruism, thus showing that individuals are more likely to be altruistic to better-connected members of their social networks. The implications of incorporating network structure into studies of altruism are discussed.  相似文献   

19.
Abstract Hamilton's rule provides the foundation for understanding the genetic evolution of social behavior, showing that altruism is favored by increased relatedness and increased productivity of altruists. But how likely is it that a new altruistic mutation will satisfy Hamilton's rule by increasing the reproductive efficiency of the group? Altruism per se does not improve efficiency, and hence we would not expect a typical altruistic mutation to increase the mean productivity of the population. We examined the conditions under which a mutation causing reproductive altruism can spread when it does not increase productivity. We considered a population divided into temporary groups of genetically similar individuals (typically family groups). We show that the spread of altruism requires a pleiotropic link between altruism and enhanced productivity in diploid organisms, but not in haplodiploid organisms such as Hymenoptera. This result provides a novel biological understanding of the barrier to the spread of reproductive altruism in diploids. In haplodiploid organisms, altruism within families that lowers productivity may spread, provided daughters sacrifice their own reproduction to raise full‐sisters. We verified our results using three single‐locus genetic models that explore a range of the possible reproductive costs of helping. The advantage of female‐to‐female altruism in haplodiploids is a well‐known prediction of Hamilton's rule, but its importance in relaxing the linkage between altruism and efficiency has not been explored. We discuss the possible role of such unproductive altruism in the origins of sociality. We also note that each model predicts a large region of parameter space were polymorphism between altruism and selfishness is maintained, a pattern independent of dominance.  相似文献   

20.
The evolution of alarm call behaviour under individual selection is studied. Four mathematical models of increasing complexity are proposed and analysed. Theoretical conditions for the evolution of “selfish”, “mutualistic”, “altruistic” or “spiteful” alarm calls are established. The models indicate that the hypotheses of benefits of retaining group members or avoiding group detection are not sufficient to explain the evolution of alarm call behaviour, but serve as a complementary factor to facilitate its evolution in most cases. It is hypothesized that the evolution of alarm calls between non-kin should evolve probably when calls are mutualistic, mildly altruistic and there are beneficial group size effects against predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号