首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis and metabolism of 5-hydroxytryptamine (serotonin; 5-HT) in the cestode Hymenolepis diminuta was investigated by High Performance Liquid Chromatography (HPLC). Incubation of intact H. diminuta in [3H]tryptophan resulted in substantial radioactivity recovered in 5-HT, 5-hydroxytryptophan (5-HTP), and 5-hydroxyindoleacetic acid (5-HIAA). Furthermore, the tissue levels of 5-HT and 5-HTP, as determined by HPLC with electrochemical detection, were significantly depressed when the animals were deprived of tryptophan. On the other hand, the tissue levels of 5-HTP were significantly increased following incubation with the 5-HTP decarboxylase inhibitor m-hydroxybenzylhydrazine. The synthesis and metabolism of 5-HT are discussed in the light of 5-HT as a physiological transmitter in H. diminuta.  相似文献   

2.
The uptake of 2 mM 14C-glucose by H. diminuta during 1-min incubations was inhibited by addition of 10 mM sodium taurocholate (NaTC) to the incubation media. Preincubation in 10 mM NaTC for 30 min did not increase the inhibition, suggesting that the inhibition was competitive. This was confirmed with a standard Lineweaver-Burk experiment. Addition of 0.35 mM oleic acid to the NaTC micelles did not alter the level of inhibition. Sodium glycocholate (NaGC) did not inhibit the uptake of glucose by H. diminuta. The uptake of glucose by H. microstoma was also inhibited by NaTC, and was not affected by NaGC. H. diminuta absorbed 3.62 mumoles of oleic acid/g dry wt during 15-min incubations in mixed micelles of 10 mM NaTC and 0.35 mM oleic acid. The total uptake was determined as the sum of the ethanol extractable and nonextractable 3H-oleic acid. In 15 mM NaTC, the uptake of oleic acid was reduced by 50%; at 30 mM NaTC the uptake of oleic acid decreased by half again. Substituting NaGC for NaTC, the greatest uptake of oleic acid, 2.63 mumoles/g dry wt, was from mixed micelles of 15 mM NaGC and 0.35 mM oleic acid. Lesser amounts of oleic acid were absorbed from mixed micelles at 5 or 30 mM NaGC. H. microstoma exhibited a similar pattern of oleic acid uptake from mixed micelles with NaTC and NaGC. At all bile salt concentrations tested, H. microstoma absorbed more oleic acid than H. diminuta and incorporated more oleic acid into the nonextractable pool. The possible roles of bile salts in the absorption of oleic acid as indicated by the results herein are discussed.  相似文献   

3.
The metabolism of [3H]formate has been examined in etiolated and greening leaves of barley (Hordeum vulgare), dwarf bean (Phaseolus vulgarls), broad bean (Vicia faba) and corn (Zea mays). Tritium was extensively incorporated by primary leaves incubated for 20-min periods in light or dark. The organic acids and free amino acids were the principal products of formate metabolism but these and other products were more heavily labelled in green tissues. Time course experiments with barley leaves revealed a rapid labelling of serine, accompanied by increasing amounts of 3H in glycine and aspartate as the feeding period was extended. These amino acid products were formed throughout a 4-day greening period with an approximate doubling in total incorporation being due to large accumulations of tritiated glycine and aspartate. The involvement of tetrahydrofolate-dependent reactions in formate metabolism was indicated by inhibition of [14C] and [3H]formate incorporation by the folate antagonist, aminopterin. Labelling of glycine and serine was also strongly inhibited (up to 90%) when the leaves were incubated with increasing concentrations of isonicotinylhydrazide.  相似文献   

4.
Abstract— The amino acid and carbohydrate metabolism of confluent cultures of C-6 glioma cells has been investigated. It was observed that the presence of glutamine in the incubation fluid was essential to maintain high glutamine levels in the cells during a 2 h incubation. When cells were incubated in a cerebrospinal fluid-like medium glutamate, glutamine, aspartate and γ-aminobutyrate (GABA) levels were comparable to those occurring in whole forebrain of adult rat in vivo. Glucose uptake was high, approx 1 μmol/mg protein/2 h, 50% of which was accounted for by lactate production. Of the remaining glucose uptake a substantial proportion was unaccounted for by known oxygen-coupled citric acid cycle flux, or glycogen or amino acid synthesis. Interestingly, the cells released into the medium significant amounts of the neuroinhibitory amino acids, GABA and glycine, and rapidly cleared the medium of the neuroexcitatory amino acids glutamate and aspartate. Metabolism of [2-14C]glucose and [3H]acetate by the cells indicated rapid labelling of the glutamate and aspartate pools of the cells by glucose in 1 h, but the relative specific activities of glutamine and GABA were much lower. The metabolism of tracer concentrations of [3H]acetate to glutamate by the cells indicated greater dilution of this isotope compared to that of labelled glucose. However, the ratio of 3H to 14C radioactivity in glutamate and other amino acids was similar to that in the mixture of glucose and acetate added to the medium. Therefore, some active route of acetate metabolism which communicates metabolically with the route of glucose metabolism to glutamate appears to exist in the cells. Significant acetate activation and fatty acid turnover would explain the present results. Some of the amino acid labelling patterns observed in these studies are not consistent with these glial-like cells behaving as models for the small compartment of amino acid metabolism in brain. Enzyme measurements corroborated the metabolic studies. Glutamate decarboxylase activity was 3–10% of the level found in whole brain. GABA transaminase was also low compared to brain as was glutamine synthetase. Glutamate dehydrogenase was present at levels equal to or higher than those of whole brain.  相似文献   

5.
Myristic acid utilization and processing in BC3H1 muscle cells.   总被引:1,自引:0,他引:1  
Because myristic acid (14:0) is important in regulating cell function, we have studied its utilization in BC3H1 muscle cells. Phosphatidylcholine contained 70-80% of the [9,10-3H]14:0 radioactivity incorporated into the cell phospholipids. In both myoblasts and myocytes, however, large amounts of radioactivity also accumulated in a labile neutral lipid pool consisting mostly of triacylglycerol. Therefore, radioactive lipid products formed when BC3H1 cells labeled with 14:0 are stimulated are not necessarily derived only from phosphatidylcholine. Elongation of [9,10-3H]14:0 occurred rapidly in the myoblasts and myocytes, and extensive desaturation also occurred in the myoblasts. Thus, even after short periods of labeling, substantial amounts of radioactivity are contained in fatty acids other than 14:0. The labeling of proteins with [9,10-3H]myristic acid was generally similar in the myoblasts and myocytes. A number of lipid-soluble, polar radioactive metabolites were released into the medium during incubation of [9,10-3H]14:0 with the cells. [1-14C] 14:0 was not converted to these compounds, indicating that they are chain-shortened 14:0 derivatives. Based on chemical analysis, two of the major products appear to be hydroxylated fatty acids. This oxidation process shows some specificity for 14:0 because similar compounds were not produced from palmitic, oleic, or linoleic acids. The myocytes formed larger amounts of the metabolites than the myoblasts, suggesting that differentiation may increase the activity of this 14:0 oxidative pathway.  相似文献   

6.
In the presence of glucose and galactose, the incorporation of radioactive inorganic phosphate (32Pi) into phosphatidylcholine of Hymenolepis diminuta was significantly lowered as compared to the control, whereas other phospholipids remained unaffected. alpha-methyl-D-glucoside, however, significantly lowered the amount of 32Pi incorporated into phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine and phosphatidic acid. Mannitol did not have any effect on the incorporation of 32Pi into the phospholipids of H. diminuta. The effect of glucose and alpha-methylglucoside on phospholipid metabolism was both time and concentration dependent. The inorganic, organic, total and phosphatidylcholine-bound phosphate of H. diminuta in the presence of various substrates were not significantly different from the control values under all incubation conditions. The results indicate that the observations made in the presence of external glucose, galactose and alpha-methylglucoside were due to their physical interaction with the transport mechanism in the tegumental membrane of H. diminuta and also their being subsequently metabolized in the cases of the former two hexoses.  相似文献   

7.
Protein, nucleic acids, and nucleotide syntheses were studied in pea aphids, Acyrthosiphon pisum (Harris), by feeding them labeled 14C-amino acids and [5-3H]-orotic acid in sucrose. It was demonstrated that in the absence of dietary essential amino acids, aphids were capable of synthesizing nucleic acids, nucleotides, and proteins when provided with a single dietary amino acid in sucrose. It is suggested that other required amino acids were possibly supplied by the symbionts present in the pea aphid and/or were obtained from the amino acid pool in the hemolymph or glucose, one of the end products of sucrose digestion. Of the various amino acids tested, synthesis of measurable amounts of protein or other compounds occurred when alanine, aspartic acid, glutamic acid, glycine, proline, or serine were provided, but no synthesis occurred with cysteine.  相似文献   

8.
Webb R. A. and Mettrick D. F. 1973. The role of serine in the lipid metabolism of the rat tapeworm Hymenolepis diminuta. International Journal for Parasitology3: 47–58. The inter-relationship between the amino acid serine and lipid metabolism in the rat tapeworm Hymenolepis diminuta has been studied under in vitro conditions. The label from U-14C-serine, U-14C-glucose and 1-14C-oleic acid was rapidly incorporated into worm tissue phospho- and glycolipids, the latter illustrating the synthesis of cerebrosides by H. diminuta. Activity from U-14C-serine was recovered in phosphatidylserine, phosphatidylethanolamine, cerebrosides and several unidentified lipid-like compounds. The majority of the label recovered in phosphatidylethanolamine was associated with the ethanolamine moiety; in the cerebrosides with the sphingosine moiety. The sugar moiety of the cerebrosides was galactose.Pulse label studies showed a serine flux phenomenon, and a rapid rate of turnover of some of the unidentified compounds.Exogenous ethanolamine had no detectable effect upon absorption and conversion of serine to tissue phosphatidylethanolamine. Incubation of H. diminuta homogenates with phosphatidyl U-14C-serine resulted in the recovery of considerable activity in phosphatidylethanolamine. The results show that the major pathway of phosphatidylethanolamine synthesis is by decarboxylation of phosphatidylserine.  相似文献   

9.
It was shown previously that worm-conditioned saline (WCS) prepared from crowded 10-day-old H. diminuta inhibited the incorporation of 3H-thymidine into DNA in the anterior regions of uncrowded worms and that the inhibition was partially accounted for by succinate and acetate excreted by the worms. The present study describes further characterization of the active components of WCS. An ultrafiltrate was fully as potent as untreated WCS, indicating that all detectable inhibitory components were less than about 500 daltons in molecular mass. Inhibitory factors in WCS were stable to heat (80 C for 30 min), cold (4 C for 48 hr), drying and reconstitution, alkaline pH (11 to 12 for 3 hr), and ethanolic extraction. Active compounds were probably not lipoidal in nature. Although the acidic ethanol extract of WCS was inhibitory, no activity was observed in fractions of WCS that contained basic, acidic and neutral amino acids. Amino compounds in the WCS were further investigated. Twenty-four amino acids were identified, 3 of which (phosphoserine, 1-methylhistidine, and 3-methylhistidine) have not been reported previously for H. diminuta. On a molar basis, alanine accounted for 40-50% of the amino acids released. The amino sugar, D-glucosaminic acid, was found in the WCS and also has not been heretofore reported from H. diminuta or any other cestode. In concentrations comparable to those in the WCS, D-glucosaminic acid inhibited incorporation of 3H-thymidine into the DNA of the tapeworms by 25-35%, suggesting that D-glucosaminic acid may be one of the crowding factors.  相似文献   

10.
Excretory products of the tapeworm Hymenolepis diminuta, fed D-[13C6]glucose in vitro for 90 min, were studied using 1H and 13C nuclear magnetic resonance spectroscopy. Signals due to lactate, succinate, acetate, and alanine were identified in the spectra. Several differently labeled species were present for these metabolites; the variations of higher concentration were a consequence of metabolic factors while those of lower concentration could be accounted for by residual 12C in the glucose. The two major labeled lactates, U-13C and 2,3-13C2, were in the ratio 2:1, respectively, and the three major labeled succinates, 1,2,2'-13C3,2,2'-13C2, and U-13C, were present in the ratio 20:10:3, respectively. The different species of labeled end products are related to the overall glucose metabolism of H. diminuta.  相似文献   

11.
M. W. Fowler 《Planta》1973,112(3):235-242
Summary 14C from [2-14C] acetate was found to be incorporated into soluble and protein amino acids in substantial amounts by bean root apices. The 14C was spread through a wide range of amino acids in both these fractions. Glutamic acid was found to be heavily labelled with 14C in both soluble and protein amino acid fractions. The data are discussed in relation to present ideas on transport and utilization of amino acids in root systems.  相似文献   

12.
The drug-metabolizing enzymes of some helminths can deactivate anthelmintics and therefore partially protect helminths against these drugs' toxic effect. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (albendazole, flubendazole, mebendazole) in the rat tapeworm Hymenolepis diminuta, a species often used as a model tapeworm. In vitro and ex vivo experiments were performed. Metabolites of the anthelmintics were detected and identified by HPLC with spectrofluorometric or mass-spectrometric detection. The enzymes of H. diminuta are able to reduce the carbonyl group of flubendazole, mebendazole and several other xenobiotics. Although the activity of a number of oxidation enzymes was determined, no oxidative metabolites of albendazole were detected. Regarding conjugation enzymes, a high activity of glutathione S-transferase was observed. A methyl derivative of reduced flubendazole was the only conjugation metabolite identified in ex vivo incubations of H. diminuta with anthelmintics. The results revealed that H. diminuta metabolized flubendazole and mebendazole, but not albendazole. The biotransformation pathways found in H. diminuta differ from those described in Moniezia expanza and suggest the interspecies differences in drug metabolism not only among classes of helminths, but even among tapeworms.  相似文献   

13.
To isolate a full-length alpha-tubulin cDNA from an eucestode, Hymenolepis diminuta, a lambda phage cDNA library was constructed. The alpha-tubulin gene was cloned, sequenced and characterized. The H. diminuta alpha-tubulin consisted of 450 amino acids. This protein contained putative sites for all posttranslational modifications as detyrosination/tyrosination at the carboxyl-terminal of protien, phosphorylation at residues R79 and K336, glycylation/glutamylation at residue G445 and acetylation at residue K40. Comparisons of H. diminuta alpha-tubulin with all full-length alpha-tubulin proteins revealed that H. diminuta alpha-tubulin possesses 10 distinctive residues, which are not found in any other alpha-tubulins. Phylogenetic analysis showed that H. diminuta alpha-tubulin has grouped in a separated branch adjacent eucestode and trematodes branch with 92% bootstrap value (1000 replicates). In conclusion, this is the first report of H. diminuta cDNA library construction, cloning and characterization of H. diminuta alpha-tubulin gene.  相似文献   

14.
We have investigated the role of endothelial cells in the metabolism of 20-hydroxyeicosatetraenoic acid (20-HETE), a vasoactive mediator synthesized from arachidonic acid by cytochrome P450 omega-oxidases. Porcine coronary artery endothelial cells (PCEC) incorporated 20-[(3)H]HETE primarily into the sn-2 position of phospholipids through a coenzyme A-dependent process. The incorporation was reduced by equimolar amounts of arachidonic, eicosapentaenoic or 8,9-epoxyeicosatrienoic acids, but some uptake persisted even when a 10-fold excess of arachidonic acid was available. The retention of 20-[(3)H]HETE increased substantially when methyl arachidonoyl fluorophosphonate, but not bromoenol lactone, was added, suggesting that a Ca(2+)-dependent cytosolic phospholipase A(2) released the 20-HETE contained in PCEC phospholipids. Addition of calcium ionophore A23187 produced a rapid release of 20-[(3)H]HETE from the PCEC, a finding that also is consistent with a Ca(2+)-dependent mobilization process. PCEC also converted 20-[(3)H]HETE to 20-carboxy-arachidonic acid (20-COOH-AA) and 18-, 16-, and 14-carbon beta-oxidation products. 20-COOH-AA produced vasodilation in porcine coronary arterioles, but 20-HETE was inactive. These results suggest that the incorporation of 20-HETE and its subsequent conversion to 20-COOH-AA in the endothelium may be important in modulating coronary vascular function.  相似文献   

15.
Dark Respiration during Photosynthesis in Wheat Leaf Slices   总被引:6,自引:2,他引:4       下载免费PDF全文
The metabolism of [14C]succinate and acetate was examined in leaf slices of winter wheat (Triticum aestivum L. cv Frederick) in the dark and in the light (1000 micromoles per second per square meter photosynthetically active radiation). In the dark [1,4-14C]succinate was rapidly taken up and metabolized into other organic acids, amino acids, and CO2. An accumulation of radioactivity in the tricarboxylic acid cycle intermediates after 14CO2 production became constant indicates that organic acid pools outside of the mitochondria were involved in the buildup of radioactivity. The continuous production of 14CO2 over 2 hours indicates that, in the dark, the tricarboxylic acid cycle was the major route for succinate metabolism with CO2 as the chief end product. In the light, under conditions that supported photorespiration, succinate uptake was 80% of the dark rate and large amounts of the label entered the organic and amino acids. While carbon dioxide contained much less radioactivity than in the dark, other products such as sugars, starch, glycerate, glycine, and serine were much more heavily labeled than in darkness. The fact that the same tricarboxylic acid cycle intermediates became labeled in the light in addition to other products which can acquire label by carboxylation reactions indicates that the tricarboxylic acid cycle operated in the light and that CO2 was being released from the mitochondria and efficiently refixed. The amount of radioactivity accumulating in carboxylation products in the light was about 80% of the 14CO2 release in the dark. This indicates that under these conditions, the tricarboxylic acid cycle in wheat leaf slices operates in the light at 80% of the rate occurring in the dark.  相似文献   

16.
The interactions between fatty acid oxidation and the oxidation of the 2-oxo acids of the branched chain amino acids were studied in the isolated Langendorff-perfused heart. 2-Oxoisocaproate inhibited the oxidation of oleate, but 2-oxoisovalerate and 2-oxo-3-methylvalerate did not. This difference was not attributable to the magnitude of the flux through the branched chain 2-oxo acid dehydrogenase, which was slightly higher with 2-oxoisovalerate than with 2-oxoisocaproate. Oxidation of 2-oxoisocaproate in the perfused heart was virtually complete, since more than 80% of the isovaleryl-CoA formed from 2-oxo[1-14C]isocaproate was further metabolized to CO2, as determined by comparing 14CO2 production from 2-oxo[14C(U)]isocaproate with that from the 1-14C-labelled compound. Only twice as much 14CO2 was produced from 2-oxo[14C(U)]isovalerate as from the 1-14C-labelled compound, indicating incomplete oxidation. This was confirmed by the accumulation in the perfusion medium of substantial quantities of labelled 3-hydroxyisobutyrate (an intermediate in the pathway of valine catabolism), when hearts were perfused with 2-oxo[14C(U)]isovalerate. The failure of 2-oxoisovalerate to inhibit fatty acid oxidation, then, can be attributed to the fact that its partial metabolism in the heart produces little ATP. We have previously shown that 3-hydroxyisobutyrate is a good gluconeogenic substrate in liver and kidney, and postulate that 3-hydroxyisobutyrate serves as an interorgan metabolite such that valine can serve as a glucogenic amino acid, even when its catabolism proceeds beyond the irreversible 2-oxo acid dehydrogenase in muscle.  相似文献   

17.
Hexokinase (EC 2.7.1.1) catalyzes the first step in glucose metabolism, using ATP for the phosphorylation of glucose to glucose 6-phosphate. A portion of the HK1 gene was cloned by mixed oligonucleotide primer amplification of cDNA using primers of high complexity. The amino acid sequence for a partial fragment of bovine cardiac muscle HK was determined and used to create primer mixtures of 256- and 1024-fold complexity. Two products were generated from bovine cardiac muscle cDNA which show 82% nucleotide and 93% amino acid identity with a region of rat brain HK1 and cDNA. This work demonstrates that extension and amplification of cDNA probes may be successful even when amino acid sequence data indicate substantial codon degeneracy.  相似文献   

18.
Individual worms from rats infected with different strains of Hymenolepis diminuta were incubated in vitro and the products lactate, succinate, acetate and ammonia assayed. Variability in excretion was not confined to differences between strains. Two metabolic types were identified. Where succinate was above 20 mumol g-1 h-1, lactate excretion was low. Where succinate was not detected, lactate excretion was high. Acetate excretion was variable. Lactate and ammonia excretion were positively correlated. All worms from one rat were of the same type but could be of either type from different rats. The host strain had no effect. A relationship was shown between lactate excretion and the number of worms from a standard inoculum present at 21 days of infection. The incidence of high lactate excretion was increased in worms from secondary infections. Components of the host immune response may thus exert effects on the metabolism of H. diminuta, manifest as shifts in emphasis on cytosolic and mitochondrial metabolism.  相似文献   

19.
The metabolism of [2-14C]folic acid over 13 days and a mixture of [2-14C]- and [3',5',9-3h]-folic acid in rats over a 6-day period is described. Both 14C and 3H are excreted in urine over the 6-day period, but 3H and 14C are only detectable in faeces for 2 days. A breakdown product of folic acid labelled with 3H only was found in some urine samples, but no metabolite corresponding to the part of the molecule containing 14C was detected. These experiments show that in the whole animal a substantial portion of orally administered folic acid undergoes scission shortly after administration [Blair Biochem. J. (1957) 68, 385-387] and that the retained folates are a shortage form for folate monoglutamates.  相似文献   

20.
1. Crystalline beta-lactamase I from Bacillus cereus 569/H yielded only amino acids on acid hydrolysis, but crystalline beta-lactamase II from the same organism yielded also substantial quantities of neutral sugars and amino sugars. 2. Analysis with an amino acid analyser indicated that the two enzymes were similar though not identical in overall amino acid composition. Analysis of neutral and amino sugars as their silyl derivatives by gas-liquid chromatography showed that the carbohydrate moiety of beta-lactamase II contained residues of glucose, galactose, mannose, fucose, glucosamine and galactosamine. 3. After oxidation and hydrolysis both beta-lactamases gave small amounts of cysteic acid. After treatment of inactive Zn(2+)-free beta-lactamase II with N-ethylmaleimide or iodoacetate enzymic activity was not restored by the addition of Zn(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号