首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flagellar and basal body development during cell division was studied in the biflagellate green alga Spermatozopsis similis Preisig et Melkonian by light microscopy of immobilized living cells, statistical analysis of flagellar lengths during the cell cycle, and electron microscopy of cells and isolated cytoskeletons. Interphase cells display two flagella of unequal/subequal length. An eyespot located in an anterior lobe of the chloroplast is connected to the basal body bearing the shorter flagellum by means of a five-stranded microtubular root. Until cell division, the two parental flagella attain the same length. During cell division, each cell forms two new flagella that grow to a length of 1.5 μm before they are distributed in a semiconservative fashion together with the parental flagella to the two progeny cells at cytokinesis. During the following interphase, the flagella newly formed during the preceding cell division grow to attain the same length as the parental flagella until the subsequent cell division. The shorter of the two flagella of a cell thus represents the developmentally younger flagellum, which transforms to the mature state during two consecutive cell cycles. Interphase cells display only two flagella-bearing basal bodies; two nascent basal bodies are formed during cell division and are connected to the microtubular d-roots of respective parental basal bodies with which the newly formed basal bodies are later distributed to the progeny cells. During segregation, basal body pairs shaft into the 11/5 o'clock direction, thus conserving the 1/7 o'clock configuration of basal body pairs of interphase cells. Prior to chloroplast and cell division, an eyespot is newly formed near the cell posterior in close association with a 1s microtubular root, while the parental eyespot is retained. During basal body segregation, eyespot-root connections for both the old and newly formed eyespots are presumably lost, and new associations of the eyespots with the 2s roots of the newly formed basal bodies are established during cytokinesis. The significance of this “eyespot-flagellar root developmental cycle” for the absolute orientation of the progeny cells is discussed.  相似文献   

2.
Differentiation of the adult Leydig cell population in the postnatal testis   总被引:8,自引:0,他引:8  
Five main cell types are present in the Leydig cell lineage, namely the mesenchymal precursor cells, progenitor cells, newly formed adult Leydig cells, immature Leydig cells, and mature Leydig cells. Peritubular mesenchymal cells are the precursors to Leydig cells at the onset of Leydig cell differentiation in the prepubertal rat as well as in the adult rat during repopulation of the testis interstitium after ethane dimethane sulfonate (EDS) treatment. Leydig cell differentiation cannot be viewed as a simple process with two distinct phases as previously reported, simply because precursor cell differentiation and Leydig cell mitosis occur concurrently. During development, mesenchymal and Leydig cell numbers increase linearly with an approximate ratio of 1:2, respectively. The onset of precursor cell differentiation into progenitor cells is independent of LH; however, LH is essential for the later stages in the Leydig cell lineage to induce cell proliferation, hypertrophy, and establish the full organelle complement required for the steroidogenic function. Testosterone and estrogen are inhibitory to the onset of precursor cell differentiation, and these hormones produced by the mature Leydig cells may be of importance to inhibit further differentiation of precursor cells to Leydig cells in the adult testis to maintain a constant number of Leydig cells. Once the progenitor cells are formed, androgens are essential for the progenitor cells to differentiate into mature adult Leydig cells. Although early studies have suggested that FSH is required for the differentiation of Leydig cells, more recent studies have shown that FSH is not required in this process. Anti-Müllerian hormone has been suggested as a negative regulator in Leydig cell differentiation, and this concept needs to be further explored to confirm its validity. Insulin-like growth factor I (IGF-I) induces proliferation of immature Leydig cells and is associated with the promotion of the maturation of the immature Leydig cells into mature adult Leydig cells. Transforming growth factor alpha (TGFalpha) is a mitogen for mesenchymal precursor cells. Moreover, both TGFalpha and TGFbeta (to a lesser extent than TGFalpha) stimulate mitosis in Leydig cells in the presence of LH (or hCG). Platelet-derived growth factor-A is an essential factor for the differentiation of adult Leydig cells; however, details of its participation are still not known. Some cytokines secreted by the testicular macrophages are mitogenic to Leydig cells. Moreover, retarded or absence of Leydig cell development has been observed in experimental models with impaired macrophage function. Thyroid hormone is critical to trigger the onset of mesenchymal precursor cell differentiation into Leydig progenitor cells, proliferation of mesenchymal precursors, acceleration of the differentiation of mesenchymal cells into Leydig cell progenitors, and enhance the proliferation of newly formed Leydig cells in the neonatal and EDS-treated adult rat testes.  相似文献   

3.
Plant roots grow due to cell division in the meristem and subsequent cell elongation and differentiation, a tightly coordinated process that ensures growth and adaptation to the changing environment. How the newly formed cells decide to stop elongating becoming fully differentiated is not yet understood. To address this question, we established a novel approach that combines the quantitative phenotypic variability of wild‐type Arabidopsis roots with computational data from mathematical models. Our analyses reveal that primary root growth is consistent with a Sizer mechanism, in which cells sense their length and stop elongating when reaching a threshold value. The local expression of brassinosteroid receptors only in the meristem is sufficient to set this value. Analysis of roots insensitive to BR signaling and of roots with gibberellin biosynthesis inhibited suggests distinct roles of these hormones on cell expansion termination. Overall, our study underscores the value of using computational modeling together with quantitative data to understand root growth.  相似文献   

4.
Multinucleate protoplasts were produced from meiotic cells at the zygotene and pachytene stages in a lily andTrillium, and their meiotic divisions were followed during subsequent culture. In each multinucleate, a complete synchrony of nuclear division was maintained throughout the meiotic process, and chromosome behavior appeared normal up to the metaphase stage. In most dinucleates, chromosome segregation movement was organized in a common spindle, and the daughter nuclei at the telophase appeared to envelope each other in the newly formed nuclear membrane. The cell was divided into two daughter cells by a common cell plate. Trinucleates were similarly converted to two cells with a hexaploid number of chromosomes. Some of the di- and trinucleates subsequently completed the second meiotic division with the formation of typical tetrad configurations. In giant cells with more than several nuclei, chromosomes separated at random but reaggregated into one giant resting nucleus, with no later cytokinesis. The rate of meiotic development in multinucleates was relatively slower in cells which contained greater numbers of nuclei.  相似文献   

5.
A novel method for the study of the fate of cell envelope components during growth and division is described. Successive treatment of the budding yeast, Saccharomyces cerevisiae, with sodium periodate and biotin hydrazide results in the covalent attachment of biotin to an unidentified cell surface component(s), without concomitant interference with subsequent growth and/or division. Further treatment of the cells with ferritin-avidin conjugates (FAv) enables the localization of the position of biotinylated surface components. Electron microscopical analysis of the distribution of attached FAv on cells fixed immediately after biotinylation revealed an even distribution of the biotin sites over the entire surface (including buds and scars) of all cells in the population. Labeling of biotinylated cells following a defined growth period revealed a new cell subpopulation completely devoid of label. The absence of biotin sites on the majority of buds and newly formed scars which appeared on the biotinylated yeasts indicate that the labeled cell wall constituents are stationary and not transferred to the newly synthesized cell wall of the daughter cells. The selective interaction of the biotinylated parent cells with avidin or antibiotin antibodies may enable an affinity-based separation of successive generations from a mixed yeast cell population.  相似文献   

6.
Cultured roots of the common bindweed, Convolvulus arvensis L. growing at the rate of 15–30 mm/day in sterile nutrient medium were fixed for electron microscopic analysis. The ultrastructure of the quiescent center, the initials of the ground meristem, and the initials of the procambium were studied in order to determine whether sequential structural changes could be correlated with models for specifying the mechanisms by which cell differentiation and cell division might be controlled. The differentiation of cells in the root proper occurs very gradually in linear files from the site of the quiescent center proximally into the different tissue regions. Major structural changes, such as the orientation and subsequent elongation of cells along the longitudinal axis of the root and cell wall changes, indicate that the control of differentiation and perhaps cell division occurs in radial gradients outwardly from the quiescent center.  相似文献   

7.
The stolon of the colonial marine hydroid Podocoryne carnea differentiates sequentially as a function of age, forming four distinguishable regions characterized by epidermal cell differentiation: The Tip, New Stolon, Cnidogenic Masses, Old Stolon. Radioautographs of sections of colonies exposed to tritiated thymidine show that although cells of the epidermis and gastrodermis of the stolon incorporate the nucleoside into acid stable polynucleotide, cells of the stolon tips do not. Stolon extension is not, therefore, the result of a localized meristem-like growth zone. Stolon branching and new polyp formation are, similarly, not signaled by increased thymidine incorporation. The initial event heralding these morphogenetic activities appears to be the reorientation of epidermal cells along a new axis, and the acquisition of perisarc dissolving ability. This evidence is contraindicative of direct dependence of colony form on colony growth. The larger part of stolon epidermal cells are organized into cnidogenic masses where cnidocytes and possibly other amoebocytic cells are produced. Although no mitotic figures have been observed in gastroderm cells of the stolon, thymidine incorporation in this tissue occurs with the same frequency as it does in epidermis. Considerable numbers of gastroderm cells can be found in the gastric cavity. Frequently these and gastroderm cells in the stolon and polyps contain more than one nucleus.  相似文献   

8.
FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.  相似文献   

9.
Cell division and cell enlargement during potato tuber formation   总被引:14,自引:0,他引:14  
Cell division and cell enlargement were studied to reveal the developmental mechanism of potato tuberization using both in vivo in vitro culture systems. Distribution of cells in S-phase was visualized by immunolabelling of incorporated bromodeoxyuridine (BrdU). Mitosis was detected in DAPI (4,6-di-amidino-2-phenylindole) or toluidine blue-stained sections. Timing and frequency of cell division were determined by daily cell counting, and cell enlargement was deduced from measurements of cell diameters.Under in vivo conditions, lateral underground buds developed into stolons due to transverse cell divisions and cell elongation in the apical region of the buds. At the onset of tuber formation, the elongation of stolons stopped and cells in pith and cortex enlarged and divided longitudinally, resulting in the swelling of the stolon tip. When tubers had a diameter of 0.8 cm, longitudinal divisions had stopped but randomly oriented division and cell enlargement occurred in the perimedullary region and continued until tubers reached their final diameter.In vitro tubers were formed by axillary buds on single node cuttings cultured under tuber-including conditions. They stopped growing at a diameter of 0.8 cm. Pith and cortex were involved in tuberization such as that found during the early stage of in vivo tuberization (<0.8 cm in diameter). The larger size of in vivo tubers is, however, due to further development of the perimedullary region, which is lacking in vitro conditions.Keywords: Cell division, cell enlargement, DNA synthesis, in vitro culture, potato, tuber formation.   相似文献   

10.
Chemolithoautotrophic, sulphide-oxidizing (thiotrophic) symbioses represent spectacular adaptations to fluctuating environmental gradients and survival is often accomplished when growth is fuelled by sufficient nourishment through the symbionts leading to fast cell proliferation. Here we show 5′-bromo-2′ deoxyuridine (BrdU) pulse labelling of vegetative growingZoothamnium niveum, a colonial ciliate obligately associated with thiotrophic ectosymbionts, and demonstrate age related growth profiles in three heteromorphic host cell types. At the colony’s apex, a large top terminal zooid performed high proliferation activity, which decreased significantly with increasing colony age but was still present in old colonies indicating that this cell possesses lifelong cell division potential. In contrast, terminal branch zooids proliferated independent of colony age but appeared to be limited by their cell division capacity predetermined by branch size, thus leading to the strict, feather-shaped colony form. Appearance of labelled terminal branch zooids allowed us to distinguish a highly proliferating apical colony region from an almost inactive, senescent basal region. In macrozooids attached to the colony, extensive BrdU labelling suggests that DNA synthesis occurs in preparation for a new generation. As motile swarmers, the macrozooids seem to be arrested in the cell cycle and mitosis and cell division occur when the swarmer settles and transforms into a top terminal zooid buildingup a new colony.  相似文献   

11.
Germline cysts containing 16 interconnected cells (cystocytes) are produced at an early stage of Drosophila oogenesis by progenitor cells known as cystoblasts that undergo four synchronous rounds of incomplete division. During cyst formation, a region of specialized, spectrin-rich cytoplasm called the fusome traverses the intercellular Connections (ring canals), linking individual cystocytes. Subsequently, 15 cystocytes begin to transport specific RNAs and other components into the remaining cell, the future oocyte. We used fusome-specific antibodies to characterize the early stages of cyst formation. During the first cystoblast division, a spherical mass of fusome material (the “spectrosome”) was associated with only one pole of the mitotic spindle, revealing that this division is asymmetric. During the subsequent three divisions, the growing fusome always associated with the pole of each mitotic spindle that remained in the mother cell, and only extended through the newly formed ring canals after each division was completed. These observations suggest that fusomes help establish a system of directional transport between cystocytes that underlies oocyte determination. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The athecate, pseudocolonial polykrikoid dinoflag‐ellates show a greater morphological complexity than many other dinoflagellate cells and contain not only elaborate extrusomes but sulci, cinguli, flagellar pairs, and nuclei in multiple copies. Among polykrikoids, Polykrikos kofoidii is a common species that plays an important role as a grazer of toxic planktonic algae but whose life cycle is poorly known. In this study, the main life cycle stages of P. kofoidii were examined and documented for the first time. The formation of gametes, 2‐zooid‐1‐nucleus stages very different from vegetative cells, was observed and the process of gamete fusion, isogamy, was recorded. Karyogamy followed shortly after completed plasmogamy. A complex reorganization of furrows (cinguli and sulci) and flagella followed zygote formation, resulting in a 4‐zooid zygote with one nucleus. The fate of zygotes under different nutritional conditions was also investigated; well‐fed zygotes were able to reenter the vegetative cycle via meiotic divisions as indicated by nuclear cyclosis. However, nuclear cyclosis was preceded by a presumably mitotic division of the primary zygote nucleus which by definition would imply that P. kofoidii has a diplohaplontic life cycle. Nuclear cyclosis in germlings hatched from spiny resting cysts indicate that these cysts are of zygote origin (hypnozygotes). Hypnozygote formation, cyst hatching, the morphology of the germling (a 1‐zooid cell), and its development into a normal pseudocolony are documented here for the first time. There is evidence that P. kofoidii has a system of complex heterothallism.  相似文献   

13.
Summary Germinating spores of the sensitive fern,Onoclea sensibilis L., undergo premitotic nuclear migration before a highly asymmetric cell division partitions each spore into a large protonemal cell and a small rhizoid initial. Nuclear movement and subsequent rhizoid formation were inhibited by the microtubule (MT) inhibitors, colchicine, isopropyl-N-3-chlorophenyl carbamate (CIPC) and griseofulvin. Colchicine prevented polar nuclear movement and cell division so that spores developed into enlarged, uninucleate single cells. CIPC and griseofulvin prevented nuclear migration, but not cell division, so that spores divided into daughter cells of approximately equal size. In colchicine-treated spores, MT were not observed at any time during germination. CIPC prevented MT formation at a time coincident with nuclear movement in the control and caused a disorientation of the spindle MT. Both colchicine and CIPC appeared to act at a time prior to the onset of normal nuclear movement. The effects of colchicine were reversible but those of CIPC were not. Cytochalasin b had no effect upon nuclear movement or rhizoid differentiation. These results suggests that MT mediate nuclear movement and that a highly asymmetric cell division is essential for rhizoid differentiation.  相似文献   

14.
All-trans retinoic acid is well known as a modulator of positional specification in vertebrate development. A similar mechanism may operate in molluscan development. Molluscan development is characterized by an invariant pattern of cell divisions, which allows the study of individual cells in the developing organism. Low concentrations of exogenous retinoic acid applied during gastrulation affect the cell division pattern in the early larval stage of the molluscLymnaea stagnalis. A few cells from the apical plate, a larval organ consisting of seven large cleavage-arrested cells, were induced by retinoic acid to resume cell division. They typically formed an area of proliferating small cells that resembles the adjacent areas of precursor cells of adult ectoderm. The identification of individual cells that are transformed by retinoic acid may provide new insights into the mechanisms underlying positional specification within the embryo.  相似文献   

15.
Kinetochore components play a major role in regulating the transmission of genetic information during cell division. Ndc10p, a kinetochore component of the essential CBF3 complex in budding yeast is required for chromosome attachment to the mitotic spindle. ndc10-1 mutant was shown to display chromosome mis-segregation as well as an aberrant mitotic spindle (Goh and Kilmartin, 1993). In addition, Ndc10p localizes along the spindle microtubules (Muller-Reichert et al., 2003). To further understand the role of Ndc10p in the mitotic apparatus, we performed a three-dimensional electron microscopy (EM) reconstruction of mitotic spindles from serial sections of cryo-immobilized ndc10-1 mutant cells. This analysis reveals a dramatic reduction in the number of microtubules present in the half-spindle, which is connected to the newly formed spindle pole body (SPB) in ndc10-1 cells. Moreover, in contrast to wild-type (WT) cells, ndc10-1 cells showed a significantly lower signal intensity of the SPB components Spc42p and Spc110p fused with GFP, in mother cell bodies compared with buds. A subsequent EM analysis also showed clear defects in the newly formed SPB, which remains in the mother cell during anaphase. These results suggest that Ndc10p is required for maturation of the newly formed SPB. Intriguingly, mutations in other kinetochore components, ndc80-1 and spc24-1, showed kinetochore detachment from the spindle, similar to ndc10-1, but did not display defects in SPBs. This suggests that unattached kinetochores are not sufficient to cause SPB defects in ndc10-1 cells. We propose that Ndc10p, alongside its role in kinetochore–microtubule interaction, is also essential for SPB maturation and mitotic spindle integrity.  相似文献   

16.
Casein Kinase I (CKI) is a conserved component of the Wnt signaling pathway, which regulates cell fate determination in metazoans. We show that post-embryonic asymmetric division and fate specification of C. elegans epidermal stem cells are controlled by a non-canonical Wnt/b-catenin signaling pathway, involving the b-catenins WRM-1 and SYS-1, and that C. elegans kin-19/CKIa functions in this pathway. Furthermore, we find that kin-19 is the only member of the Wnt asymmetry pathway that functions with, or in parallel to, the heterochronic temporal patterning pathway to control withdrawal from self-renewal and subsequent terminal differentiation of epidermal stem cells. We show that, except in the case of kin-19, the Wnt asymmetry pathway and the heterochronic pathway function separately and in parallel to control different aspects of epidermal stem cell fate specification. However, given the function of kin-19/CKIa in both pathways, and that CKI, Wnt signaling pathway and heterochronic pathway genes are widely conserved in animals, our findings suggest that CKIa may function as a regulatory hub through which asymmetric division and terminal differentiation are coordinated in adult stem cells of vertebrates.  相似文献   

17.
Agametic reproductive activity (via paratomy) of Aeolosoma viride was analyzed throughout the life cycle in individually reared specimens. Aeolosoma viride is organized in linear chains of 3–4 zooids; the main zooid is anterior, and the secondary zooids are positioned posterior to the main zooid in inverse order with respect to their degree of growth, the most advanced being at the posterior end, and those less advanced nearer the main zooid. On average, worms lived 66±10 d and produced 57±6 offspring. A budding area located in the sub‐terminal part of the main zooid produced chaetigers that formed the origin of the secondary zooids. A growth zone was located in the posterior end of each secondary zooids. Fission occurred between the penultimate and the last zooid of the chain. Just before fission, the growth zone of each secondary zooid became a budding area. Agametic reproduction was via multiple paratomy with linear succession of the secondary zooid and terminal fission. The structure of the chain was therefore modulated by the interaction of the processes of budding, growth, cephalic differentiation, and fission, which occurred continuously and on different timescales. Values of parameters describing paratomic activity (interval between origin of the zooids, time to produce a chaetiger, growth time of the zooids, and interval between the fission of the filial chains) are low early in an individual's life, but increase during senescence. Due to its relatively rapid lifecycle and high reproductive activity, A. viride is a convenient experimental organism for the study of agametic reproduction.  相似文献   

18.
Gametogenesis of a compound ascidian Botryllus primigenus was studied histologically. On either side of the zooid (stage 9), in the gonadal space between the epidermis and the atrial epithelium, either a single testis or a complex of an egg follicle and a testis can be formed. The egg follicle consists of a single ovum (occasionally two ova) and its accessory cells and is connected with the atrial epithelium by the follicle stalk. The egg follicle is always accompanied by the brood pouch, a diverticulum of the atrial cavity. The testis is equipped with a vestigial spermiduct and is attached to the atrial epithelium. Buds of stage 8 comprise, besides the developing testes and, egg follicles, loose aggregations of hemoblasts and oocytes of early developmental stages, which are already accompanied by primary follicular cells. Both the oocytes and the primary follicular cells seem to arise from the hemoblasts. The young oocytes are isolated in the gonadal space of the buds nnd are transferred to buds of the succeeding generations until they finally mature. In the bud of stage 3, a compact mass of cells appears, attaching to tbe inner vesicle on either side of the body. It is derived from the hemoblasts lodged there in the preceding generation and presumably also from the circulating hemoblasts. When the cell mass receives a large oocyte derived from the preceding generation, part of the cell mass differentiates into egg envelopes, forming an egg follicle, and a follicle stalk and the remainder into a testis. When the cell mass receives no oocyte, it differentiate as a whole into a testis. In the egg follicle thus formed the outer and inner follicular cells increase in number by mitotic division. Subsequently, initial test cells are derived from the inner follicle by migration across the developing chorion; then they increas2 in number by mitosis. In the testis, meiosis and spermiogenesis take place.  相似文献   

19.
During spore germination in the fern, Onoclea sensibilis L., the nucleus moves from a central position to one end, and an asymmetrical cell division partitions the spore into two cells of greatly unequal size. The smaller cell differentiates directly into a rhizoid, whereas the larger cell and its derivatives give rise to the prothallus. In the presence of 5 mM caffeine, the nuclei of most of the spores undergo mitotic replication, whereas cell wall formation is blocked. Multinucleate single cells are produced, which are capable of growth, but no rhizoid differentiation occurs. In some cases a partial cell wall is produced, but the nucleus moves through the discontinuity back to the center of the spore, and the enucleate, incompletely partitioned small “cell” fails to differentiate into a rhizoid. In less than 1% of the spores a broad protuberance, whose wall is yellow-brown, is formed in a multinucleate single cell. The color, staining reaction to ruthenium red, and ultrastructural appearance of the protuberance resemble that of the rhizoid wall. It appears that infrequently in the caffeine-treated spores, a feature which is characteristic of rhizoids is expressed, in the absence of asymmetric cell division, in a cell which otherwise is unable to produce a rhizoid. The results are interpreted to mean that the spore has a highly localized, persistent differentiated region. For rhizoid differentiation to occur, a nucleus must be confined in that region – a confinement which normally is accomplished by the geometrically asymmetric first cell division of germination.  相似文献   

20.
Laboratory experiments documenting the decomposition pattern of extant organisms are used to reconstruct the anatomy and taphonomy of fossil taxa. The subclass Graptolithina (Hemichordata: Pterobranchia) is a significant fossil taxon of the Palaeozoic era, represented by just one modern genus, Rhabdopleura. The rich graptolite fossil record is characterized by an almost total absence of fossil zooids. Here we investigated the temporal decay pattern of Rhabdopleura sp. tubes, stolons and single zooids removed from the tubarium. Tubes showed decay after four days, when fuselli began to separate from the tube walls. This rapid loss may explain the absence of fuselli from some graptolite fossils. The black stolon did not show decay until day 155. One day after their removal, zooids quickly decomposed in the following temporal sequence: (1) tentacles; (2) ectoderm; (3) arms; (4) gut; (5) cephalic shield, leading to complete disappearance of recognizable body parts in the majority of experimental zooids within 64–104 h. The most resistant zooid features to decay (61 days) were black‐pigmented granules. These results indicate that tubes and the black stolon would persist for weeks across death, transport and burial, whereas a complete decay of zooid features occurs in few days, providing an explanation for the overall poor record of fossil graptolite zooids and suggesting that recorded silhouettes of fossil zooids may be attributed to fossil decay‐resistant pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号