首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral gene transfer affects the evolutionary path of key genes involved in ancient metabolic traits, such as sulfate respiration, even more than previously expected. In this study, the phylogeny of the adenosine-5'-phosphosulfate (APS) reductase was analyzed. APS reductase is a key enzyme in sulfate respiration present in all sulfate-respiring prokaryotes. A newly developed PCR assay was used to amplify and sequence a fragment ( approximately 900 bp) of the APS reductase gene, apsA, from a taxonomically wide range of sulfate-reducing prokaryotes (n = 60). Comparative phylogenetic analysis of all obtained and available ApsA sequences indicated a high degree of sequence conservation in the region analyzed. However, a comparison of ApsA- and 16S rRNA-based phylogenetic trees revealed topological incongruences affecting seven members of the Syntrophobacteraceae and three members of the Nitrospinaceae, which were clearly monophyletic with gram-positive sulfate-reducing bacteria (SRB). In addition, Thermodesulfovibrio islandicus and Thermodesulfobacterium thermophilum, Thermodesulfobacterium commune, and Thermodesulfobacterium hveragerdense clearly branched off between the radiation of the delta-proteobacterial gram-negative SRB and the gram-positive SRB and not close to the root of the tree as expected from 16S rRNA phylogeny. The most parsimonious explanation for these discrepancies in tree topologies is lateral transfer of apsA genes across bacterial divisions. Similar patterns of insertions and deletions in ApsA sequences of donor and recipient lineages provide additional evidence for lateral gene transfer. From a subset of reference strains (n = 25), a fragment of the dissimilatory sulfite reductase genes (dsrAB), which have recently been proposed to have undergone multiple lateral gene transfers (M. Klein et al., J. Bacteriol. 183:6028-6035, 2001), was also amplified and sequenced. Phylogenetic comparison of DsrAB- and ApsA-based trees suggests a frequent involvement of gram-positive and thermophilic SRB in lateral gene transfer events among SRB.  相似文献   

2.
The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.  相似文献   

3.
Sulfate reduction, mediated by sulfate-reducing bacteria (SRB), is the dominant remineralization pathway in sediments of New England salt marshes. High sulfate reduction rates are associated with the rhizosphere of Spartina alterniflora when plants elongate aboveground. The growth process concurrently produces significant amounts of new rhizome material belowground and the plants leak dissolved organic compounds. This study investigated the diversity of SRB in a salt marsh over an annual growth cycle of S. alterniflora by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Because the dsrAB gene is a key gene in the anaerobic sulfate-respiration pathway, it allows the identification of microorganisms responsible for sulfate reduction. Conserved dsrAB primers in polymerase chain reaction (PCR) generated full-length dsrAB amplicons for cloning and DNA sequence analysis. Nearly 80% of 380 clone sequences were similar to genes from Desulfosarcina and Desulfobacterium species within Desulfobacteraceae. This reinforces the hypothesis that complete oxidizers with high substrate versatility dominate the marsh. However, the phylotypes formed several clades that were distinct from cultured representatives, indicating a greater diversity of SRB than previously appreciated. Several dsrAB sequences were related to homologues from gram-positive, thermophilic and non-thermophilic Desulfotomaculum species. One dsrAB lineage formed a sister group to cultured members of the delta-proteobacterial group Syntrophobacteraceae. A deeply branching dsrAB lineage was not affiliated with genes from any cultured SRB. The sequence data from this study will allow for the design of probes or primers that can quantitatively assess the diverse range of sulfate reducers present in the environment.  相似文献   

4.
The structural genes for dissimilatory sulfite reductase (desulfoviridin) from Desulfovibrio vulgaris Hilden-borough were cloned as a 7.2-kbp SacII DNA fragment. Nucleotide sequencing indicated the presence of a third gene, encoding a protein of only 78 amino acids, immediately downstream from the genes for the alpha and beta subunits (dsvA and dsvB). We designated this protein DsvD and the gene encoding it the dsvD gene. The alpha- and beta-subunit sequences are highly homologous to those of the dissimilatory sulfite reductase from Archaeoglobus fulgidus, a thermophilic archaeal sulfate reducer, which grows optimally at 83 degrees C. A gene with significant homology to dsvD was also found immediately downstream from the dsrAB genes of A. fulgidus. The remarkable conservation of gene arrangement and sequence across domain (bacterial versus archaeal) and physical (mesophilic versus thermophilic) boundaries indicates an essential role for DsvD in dissimilatory sulfite reduction and allowed the construction of conserved deoxyoligonucleotide primers for detection of the dissimilatory sulfite reductase genes in the environment.  相似文献   

5.
The vertical distribution and diversity of sulfate-reducing prokaryotes (SRPs) in a sediment core from the Pearl River Estuary was reported for the first time. The profiles of methane and sulfate concentrations along the sediment core indicated processes of methane production/oxidation and sulfate reduction. Phospholipid fatty acids analysis suggested that sulfur-oxidizing bacteria (SOB) might be abundant in the upper layers, while SRPs might be distributed throughout the sediment core. Quantitative competitive-PCR analysis indicated that the ratios of SRPs to total bacteria in the sediment core varied from around 2–20%. Four dissimilatory sulfite reductase ( dsrAB) gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), bottom layer (44–50 cm) and the sulfate-methane transition zone (32–42 cm) sediments. Most of the retrieved dsrAB sequences (80.9%) had low sequence similarity with known SRP sequences and formed deeply branching dsrAB lineages. Meanwhile, bacterial 16S rRNA gene analysis revealed that members of the Proteobacteria were predominant in these sediments. Putative SRPs within Desulfobacteriaceae, Syntrophaceae and Desulfobulbaceae of Deltaproteobacteria , and putative SOB within Epsilonproteobacteria were detected by the 16S rRNA gene analysis. Results of this study suggested a variety of novel SRPs in the Pearl River Estuary sediments.  相似文献   

6.
The diversity of sulfate-reducing microorganisms was investigated in two contrasting mudflats of the Seine estuary, by PCR amplification, cloning and sequencing of the genes coding for parts of the alpha and beta subunits of dissimilatory sulfite reductase (dsrAB). One site is located in the mixing-zone and shows marine characteristics, with high salinity and sulfate concentration, whereas the other site shows freshwater characteristics, with low salinity and sulfate concentration. Diversity and abundance of dsrAB genes differed between the two sites. In the mixing-zone sediments, most of the dsrAB sequences were affiliated to those of marine Gram-negative bacteria belonging to the order of Desulfobacterales, whereas in the freshwater sediments, a majority of dsrAB sequences was related to those of the Gram-positive bacteria belonging to the genus Desulfotomaculum. It is speculated that this is related to the salinity and the sulfate concentration in the two mudflats.  相似文献   

7.
The dissimilatory reduction of sulfate contributes to the retention of sulfur in acidic mineratrophic peatlands. Novel sulfate-reducing prokaryotes (SRPs) colonize these low-sulfate fens. This study assessed the community structures of SRPs in a depth gradient (0-50 cm) in a fen, located in the Fichtelgebirge (Spruce Mountains), Germany. Detection of SRPs with multiplex (terminal-) restriction fragment length polymorphism analysis of amplified dissimilatory (bi)sulfite reductase genes (dsrAB) separated three subgroups derived from (i) the upper 5 and 10 cm, (ii) 15-25 cm, and (iii) 30-50 cm depth. Biogeochemical parameters measured in the soil solution from July 2001 to July 2004 documented that the upper 5-10 cm were exposed to drying and oxygenation prior to sampling. Periodic oxygenation reached a maximum depth of 25 cm in the water-saturated fen and was concomitant with relative high concentrations of nitrate (120 microM) and sulfate (up to 310 microM). The fen soil was permanently anoxic below 30 cm depth with average concentrations of sulfate below 40 microM and maximum concentrations of methane. Cloning of dsrAB PCR products from 5, 20 and 40 cm depth yielded a total of 84 unique dsrAB restriction patterns. Partial sequencing of 61 distinct clones resulted in 59 unique partial protein sequences that mainly clustered with DsrA sequences of uncultivated sulfate reducers. Syntrophobacter fumaroxidans- and Syntrophobacter wolinii-related bacteria appeared to be present only in 40 cm depth. Differences in the SRP community structures suggested that SRPs present in the upper fen soil have to tolerate O(2) and even drying, whereas SRPs present in deep anoxic zones may act as syntrophic fermentors in cooperation with H(2)-utilizing methanogens.  相似文献   

8.
The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods.  相似文献   

9.
A Desulfovibrio vulgaris Hildenborough mutant lacking the nrfA gene for the catalytic subunit of periplasmic cytochrome c nitrite reductase (NrfHA) was constructed. In mid-log phase, growth of the wild type in medium containing lactate and sulfate was inhibited by 10 mM nitrite, whereas 0.6 mM nitrite inhibited the nrfA mutant. Lower concentrations (0.04 mM) inhibited the growth of both mutant and wild-type cells on plates. Macroarray hybridization indicated that nitrite upregulates the nrfHA genes and downregulates genes for sulfate reduction enzymes catalyzing steps preceding the reduction of sulfite to sulfide by dissimilatory sulfite reductase (DsrAB), for two membrane-bound electron transport complexes (qmoABC and dsrMKJOP) and for ATP synthase (atp). DsrAB is known to bind and slowly reduce nitrite. The data support a model in which nitrite inhibits DsrAB (apparent dissociation constant K(m) for nitrite = 0.03 mM), and in which NrfHA (K(m) for nitrite = 1.4 mM) limits nitrite entry by reducing it to ammonia when nitrite concentrations are at millimolar levels. The gene expression data and consideration of relative gene locations suggest that QmoABC and DsrMKJOP donate electrons to adenosine phosphosulfate reductase and DsrAB, respectively. Downregulation of atp genes, as well as the recorded cell death following addition of inhibitory nitrite concentrations, suggests that the proton gradient collapses when electrons are diverted from cytoplasmic sulfate to periplasmic nitrite reduction.  相似文献   

10.
The classical perception of members of the gram-positive Desulfotomaculum cluster I as sulfate-reducing bacteria was recently challenged by the isolation of new representatives lacking the ability for anaerobic sulfate respiration. For example, the two described syntrophic propionate-oxidizing species of the genus Pelotomaculum form the novel Desulfotomaculum subcluster Ih. In the present study, we applied a polyphasic approach by using cultivation-independent and culturing techniques in order to further characterize the occurrence, abundance, and physiological properties of subcluster Ih bacteria in low-sulfate, methanogenic environments. 16S rRNA (gene)-based cloning, quantitative fluorescence in situ hybridization, and real-time PCR analyses showed that the subcluster Ih population composed a considerable part of the Desulfotomaculum cluster I community in almost all samples examined. Additionally, five propionate-degrading syntrophic enrichments of subcluster Ih bacteria were successfully established, from one of which the new strain MGP was isolated in coculture with a hydrogenotrophic methanogen. None of the cultures analyzed, including previously described Pelotomaculum species and strain MGP, consumed sulfite, sulfate, or organosulfonates. In accordance with these phenotypic observations, a PCR-based screening for dsrAB (key genes of the sulfate respiration pathway encoding the alpha and beta subunits of the dissimilatory sulfite reductase) of all enrichments/(co)cultures was negative with one exception. Surprisingly, strain MGP contained dsrAB, which were transcribed in the presence and absence of sulfate. Based on these and previous findings, we hypothesize that members of Desulfotomaculum subcluster Ih have recently adopted a syntrophic lifestyle to thrive in low-sulfate, methanogenic environments and thus have lost their ancestral ability for dissimilatory sulfate/sulfite reduction.  相似文献   

11.
The Black Sea, with its highly sulfidic water column, is the largest anoxic basin in the world. Within its sediments, the mineralization of organic matter occurs essentially through sulfate reduction and methanogenesis. In this study, the sulfate-reducing community was investigated in order to understand how these microorganisms are distributed relative to the chemical zonation: in the upper sulfate zone, at the sulfate-methane transition zone, and deeply within the methane zone. Total bacteria were quantified by real-time PCR of 16S rRNA genes whereas sulfate-reducing microorganisms (SRM) were quantified by targeting their metabolic key gene, the dissimilatory (bi)sulfite reductase (dsrA). Sulfate-reducing microorganisms were predominant in the sulfate zone but occurred also in the methane zone, relative proportion was maximal around the sulfate-methane transition, c. 30%, and equally high in the sulfate and methane zones, 5-10%. The dsrAB clone library from the sulfate-methane transition zone, showed mostly sequences affiliated with the Desulfobacteraceae. While, the dsrAB clone libraries from the upper, sulfate-rich zone and the deep, sulfate-poor zone were dominated by similar, novel deeply branching sequences which might represent Gram-positive spore-forming sulfate- and/or sulfite-reducing microorganisms. We thus hypothesize that terminal carbon mineralization in surface sediments of the Black Sea is largely due to the sulfate reduction activity of previously hidden SRM. Although these novel SRM were also abundant in sulfate-poor, methanogenic areas of the Black Sea sediment, their activities and possibly very versatile metabolic capabilities remain subject of further study.  相似文献   

12.
13.
14.
The community structure of sulfate-reducing bacteria (SRB) associated with reed (Phragmites australis) rhizosphere in Lake Velencei (Hungary) was investigated by using cultivation-based and molecular methods. The cultivation methods were restricted to recover lactate-utilizing species with the exclusion of Desulfobacter and some Desulfobacterium species presumably not being dominant members of the examined community. The most-probable-number (MPN) estimations of lactate-utilizing SRB showed that the cell counts in reed rhizosphere were at least one order of magnitude higher than that in the bulk sediment. The number of endospores was low compared to the total SRB counts. From the highest positive dilution of MPN series, 47 strains were isolated and grouped by restriction fragment length polymorphism (RFLP) analysis of the amplified 16S ribosomal RNA (rRNA) and dsrAB (dissimilatory sulfite reductase) genes. Contrary to the physiological diversity of the isolates, the combined results of RFLP analysis revealed higher diversity at species as well as at subspecies level. Based on the partial 16S rRNA sequences, the representative strains were closely affiliated with the genera Desulfovibrio and Desulfotomaculum. The partial dsrAB sequences of the clones, recovered after isolation and PCR amplification of the community DNA, were related to hitherto uncultured species of the genera Desulfovibrio and Desulfobulbus. Nevertheless, the representative of the second largest clone group was shown to be closely affiliated with the sequenced dsrAB gene of a strain isolated from the same environment and identified as Desulfovibrio alcoholivorans. Another clone sequence was closely related to a possible novel species also isolated within the scope of this work.  相似文献   

15.
Origins and diversification of sulfate-respiring microorganisms   总被引:9,自引:0,他引:9  
If the diversification of microbial life can be depicted as a single tree, as inferred by comparative sequencing of ribosomal RNAs, this could provide a framework for defining the order of emergence of new metabolic pathways. However, recent recognition that lateral gene transfer has been a significant force in microbial evolution has created uncertainty about the interpretation of taxonomies based on gene sequences. In this context, the origins and evolution of sulfate respiration will be evaluated considering the evolutionary history of a central enzyme in this process, the dissimilatory sulfite reductase. These studies suggest at least two major lateral transfer events during the early diversification of sulfate respiring microorganisms. The high sequence conservation of this enzyme has also provided a mechanism to directly explore the natural diversity of sulfate-respiring organisms using molecular techniques, avoiding the bias of culture-based identification. These studies suggest that the habitat range and evolutionary diversity of this key functional group of organisms is greater than now appreciated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Sulfur-oxidizing prokaryotes (SOP) catalyse a central step in the global S-cycle and are of major functional importance for a variety of natural and engineered systems, but our knowledge on their actual diversity and environmental distribution patterns is still rather limited. In this study we developed a specific PCR assay for the detection of dsrAB that encode the reversely operating sirohaem dissimilatory sulfite reductase (rDSR) and are present in many but not all published genomes of SOP. The PCR assay was used to screen 42 strains of SOP (most without published genome sequence) representing the recognized diversity of this guild. For 13 of these strains dsrAB was detected and the respective PCR product was sequenced. Interestingly, most dsrAB -encoding SOP are capable of forming sulfur storage compounds. Phylogenetic analysis demonstrated largely congruent rDSR and 16S rRNA consensus tree topologies, indicating that lateral transfer events did not play an important role in the evolutionary history of known rDSR. Thus, this enzyme represents a suitable phylogenetic marker for diversity analyses of sulfur storage compound-exploiting SOP in the environment. The potential of this new functional gene approach was demonstrated by comparative sequence analyses of all dsrAB present in published metagenomes and by applying it for a SOP census in selected marine worms and an alkaline lake sediment.  相似文献   

17.
In contrast to previous findings, we demonstrate that the dissimilatory (bi)sulfite reductase genes (dsrAB) of Desulfobacula toluolica were vertically inherited. Furthermore, Desulfobacterium anilini and strain mXyS1 were identified, by dsrAB sequencing of 17 reference strains, as members of the donor lineage for those gram-positive Desulfotomaculum species which laterally acquired dsrAB.  相似文献   

18.
Genomic techniques commonly used for assessing distributions of microorganisms in the environment often produce small sample sizes. We investigated artificial neural networks for analyzing the distributions of nitrite reductase genes (nirS and nirK) and two sets of dissimilatory sulfite reductase genes (dsrAB1 and dsrAB2) in small sample sets. Data reduction (to reduce the number of input parameters), cross-validation (to measure the generalization error), weight decay (to adjust model parameters to reduce generalization error), and importance analysis (to determine which variables had the most influence) were useful in developing and interpreting neural network models that could be used to infer relationships between geochemistry and gene distributions. A robust relationship was observed between geochemistry and the frequencies of genes that were not closely related to known dissimilatory sulfite reductase genes (dsrAB2). Uranium and sulfate appeared to be the most related to distribution of two groups of these unusual dsrAB-related genes. For the other three groups, the distributions appeared to be related to pH, nickel, nonpurgeable organic carbon, and total organic carbon. The models relating the geochemical parameters to the distributions of the nirS, nirK, and dsrAB1 genes did not generalize as well as the models for dsrAB2. The data also illustrate the danger (generating a model that has a high generalization error) of not using a validation approach in evaluating the meaningfulness of the fit of linear or nonlinear models to such small sample sizes.  相似文献   

19.
Discrepancies in phylogenetic trees of bacteria and archaea are often explained as lateral gene transfer events. However, such discrepancies may also be due to phylogenetic artifacts or orthology assignment problems. A first step that may help to resolve this dilemma is to estimate the extent of phylogenetic inconsistencies in trees of prokaryotes in comparison with those of higher eukaryotes, where no lateral gene transfer is expected. To test this, we used 21 proteomes each of eukaryotes (mainly opisthokonts), proteobacteria, and archaea that spanned equivalent levels of genetic divergence. In each domain of life, we defined a set of putative orthologous sequences using a phylogenetic-based orthology protocol and, as a reference topology, we used a tree constructed with concatenated genes of each domain. Our results show, for most of the tests performed, that the magnitude of topological inconsistencies with respect to the reference tree was very similar in the trees of proteobacteria and eukaryotes. When clade support was taken into account, prokaryotes showed some more inconsistencies, but then all values were very low. Discrepancies were only consistently higher in archaea but, as shown by simulation analysis, this is likely due to the particular tree of the archaeal species used here being more difficult to reconstruct, whereas the trees of proteobacteria and eukaryotes were of similar difficulty. Although these results are based on a relatively small number of genes, it seems that phylogenetic reconstruction problems, including orthology assignment problems, have a similar overall effect over prokaryotic and eukaryotic trees based on single genes. Consequently, lateral gene transfer between distant prokaryotic species may have been more rare than previously thought, which opens the way to obtain the tree of life of bacterial and archaeal species using genomic data and the concatenation of adequate genes, in the same way as it is usually done in eukaryotes.  相似文献   

20.
The genes encoding the α- and β-subunits of dissimilatory sulfite reductase, dsrAB, from the hyper-thermophilic archaeon Archaeoglobus profundus and the thermophilic gram-positive bacterium Desulfotomaculum thermocisternum were cloned and sequenced. The dsrAB genes are contiguous, and most probably comprise an operon also including a dsrD homolog, a conserved gene of unknown function located downstream of dsrAB in all four sulfate reducers so far sequenced. Sequence comparison confirms that dissimilatory sulfite reductase, Dsr, is a highly conserved enzyme. A phylogenetic analysis using the available Dsr sequences, including Dsr-like proteins from nonsulfate reducers, suggests a paralogous origin of the α- and β-subunits. Furthermore, the Dsr from sulfate reducers forms a separate cluster, with Dsr from the bacterial sulfate reducers Desulfotomaculum thermocisternum and Desulfovibrio vulgaris branching together, next to Dsr from Archaeoglobus profundus and Archaeoglobus fulgidus. Based on an alignment with the assimilatory sulfite reductase from Escherichia coli, the amino acid residues involved in binding of sulfite, siroheme, and [Fe4S4]-clusters have been tentatively identified, which is consistent with the binding of two sirohemes and four [Fe4S4]-clusters per α2β2 structure. The evolution of Dsr and the structural basis for the binding of substrate and cofactors are discussed. Received: May 1, 1998 / Accepted: August 10, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号