首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two cDNA clones, cATMPK1 and CATMPK2, encoding MAP kinases (mitogen-activated protein kinases) have been cloned from Arabidopsis thaliana and their nucleotide sequences have been determined. Putative proteins encoded by ATMPK1 and ATMPK2 genes, designated ATMPK1 and ATMPK2, contain 370 and 376 amino acid residues, respectively, and are 88.7% identical at the amino acid sequence level. ATMPK1 and ATMPK2 exhibit significant similarity to rat ERK2 (49%) and Xenopus MAP kinase (50%). The amino acid residues corresponding to the sites of phosphorylation (Thr-Glu-Tyr) that are involved in the activation of MAP kinases are conserved in ATMPK1 and ATMPK2. Northern blot analysis indicates that the ATMPK1 and ATMPK2 mRNAs are significantly present in all the organs except seeds. Genomic Southern blot analysis suggests that there are a few additional genes that are related to ATMPK1 and ATMPK2 in the Arabidopsis genome. Purified Xenopus MAP kinase kinase (MAPK kinase) phosphorylates ATMPK1 and ATMPK2 proteins that have been expressed in Escherichia coli, activating these enzymes. A rapid and transient activation of 46-kDa protein kinase activity that phosphorylated myelin basic protein (MBP) was detected when auxinstarved tobacco BY-2 cells were treated with synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D). Protein kinase activities which phosphorylated the recombinant ATMPK2 protein also increased rapidly after auxin treatment in the auxin-starved BY-2 cells. These results suggest that auxin may function as an activator of plant MAP kinase homologues, as do various mitogens in animal systems.  相似文献   

2.
The mitogen activated protein (MAP) kinase pathway of eukaryotes is stimulated by many growth factors and is required for the integration of multiple cellular signals. In order to study the function of MAP kinases during plant ovule development we have synthesized a Petunia hybrida ovule-specific cDNA library and screened for MAP protein kinase-related sequences using a DNA probe obtained by PCR. A full-length cDNA clone was identified (PMEK for Petunia hybrida MAP/ERK-related protein kinase) and shown to encode a protein related to the family of MAP/ERK protein kinases. Southern blot analysis showed that PMEK is a member of a small multigene family in P. hybrida. The cDNA codes for a protein (PMEK1) of 44.4 kDa with an overall sequence identity of 44% to the products of the mammalian ERK/MAP kinase gene, and the budding yeast KSS1 and FUS3 genes. PMEK1 displays 96 and 80% identity respectively with the tobacco NTF3 and Arabidopsis ATMPK1 kinases, and only 50% to the more distantly related plant MAP kinase MsERK1 from alfalfa. The two phosphorylation sites found in the loop between subdomain VII and VIII in all the other MAP kinases are also present in PMEK1. RNA gel blot and RT-PCR analyses demonstrated that PMEK1 is expressed in vegetative organs and preferentially accumulated in female reproductive organs of P. hybrida. In situ hybridization experiments showed that in the reproductive organs PMEK1 is expressed only in the ovary and not in the stamen.  相似文献   

3.
Wada S  Watanabe T 《Genetica》2007,131(3):307-314
Mitogen-activated protein (MAP) kinases, a closely related family of protein kinases, are involved in cell cycle regulation and differentiation in yeast and human cells. They have not been documented in ciliates. We used PCR to amplify DNA sequences of a ciliated protozoan—Paramecium caudatum—using primers corresponding to amino acid sequences that are common to MAP kinases. We isolated and sequenced one putative MAP kinase-like serine/threonine kinase cDNA from P. caudatum. This cDNA, called pcstk1 (Paramecium caudatum Serine/Threonine Kinase 1) shared approximately 35% amino acid identity with MAP kinases from yeast. MAP kinases are activated by phosphorylation of specific threonine and tyrosine residues. These two amino acid residues are conserved in the PCSTK1 sequence at positions Thr 159 and Tyr 161. The PSTAIRE motif, which is characteristic of the CDK2 gene family, cannot be found in ORF of PCSTK1. The highest homology score was to human STK9, which contains MAP type kinase domains. Comparisons of expression level have shown that pcstk1 is expressed equally in cells at different stages (sexual and asexual). We discussed the possibility, as in other organisms, that a family of MAP kinase genes exists in P. caudatum.  相似文献   

4.
The aim of the investigation reported here was to assess the role of gibberellin in cotton fiber development. The results of experiments in which the gibberellin (GA) biosynthesis inhibitor paclobutrazol (PAC) was tested on in vitro cultured cotton ovules revealed that GA is critical in promoting cotton fiber development. Plant responses to GA are mediated by DELLA proteins. A cotton nucleotide with high sequence homology to Arabidopsis thaliana GAI (AtGAI) was identified from the GenBank database and analyzed with the BLAST program. The full-length cDNA was cloned from upland cotton (Gossypium hirsutum, Gh) and sequenced. A comparison of the putative protein sequence of this cDNA with all Arabidopsis DELLA proteins indicated that GhRGL is a putative ortholog of AtRGL. Over-expression of this cDNA in Arabidopsis plants resulted in the dwarfed phenotype, and the degrees of dwarfism were related to the expression levels of GhRGL. The deletion of 17 amino acids, including the DELLA domain, resulted in the dominant dwarf phenotype, demonstrating that GhRGL is a functional protein that affects plant growth. Real-time quantitative PCR results showed that GhRGL mRNA is highly expressed in the cotton ovule at the elongation stage, suggesting that GhRGL may play a regulatory role in cotton fiber elongation.  相似文献   

5.
Glutathione is essential for protecting plants from a range of environmental stresses, including heavy metals where it acts as a precursor for the synthesis of phytochelatins. A 1658 bp cDNA clone for glutathione synthetase (gsh2) was isolated fromArabidopsis thaliana plants that were actively synthesizing glutathione upon exposure to cadmium. The sequence of the clone revealed a protein with an estimated molecular mass of 53858 Da that was very similar to the protein from higher eukaryotes, was less similar to the gene from the fission yeast,Schizosaccharomyces pombe, and shared only a small region of similarity with theEscherichia coli protein. A 4.3 kbSstI fragment containing the genomic clone for glutathione synthetase was also isolated and sequenced. A comparison of the cDNA and genomic sequences revealed that the gene was composed of twelve exons.When theArabidopsis cDNA cloned in a special shuttle vector was expressed in aS. pombe mutant deficient in glutathione synthetase activity, the plant cDNA was able to complement the yeast mutation. Glutathione synthetase activity was measurable in wild-type yeast cells, below detectable levels in thegsh2 - mutant, and restored to substantial levels by the expression of theArabidopsis cDNA. TheS. pombe mutant expressing the plant cDNA had near wild type levels of total cellular thiols,109Cd2+ binding activity, and cadmium resistance. Since theArabidopsis cDNA was under control of a thiamine-repressible promoter, growth of the transformed yeast on thiamine-free medium increased expression of the cDNA resulting in increases in cadmium resistance.  相似文献   

6.
7.
We have isolated and sequenced a MAP (mitogen-activated protein) kinase-type cDNA from a tobacco (Nicotiana tabacum L.) cell suspension cDNA library by screening with a PCR fragment amplified from the same library with oligonucleotide primers corresponding to two sequences conserved in yeast and animal MAP kinases. The tobacco sequence, ntf3, shows 45–54% identity to various members of the MAP kinase family at the protein level. Northern experiments showed that ntf3 is expressed in all tobacco tissues tested, including pollen isolated at different developmental stages. Southern analysis indicated that, as in other organisms, there is a family of MAP kinase genes in tobacco. In complementary tests, ntf3 could not substitute the yeast MAP kinase genes fus3 and kss1.  相似文献   

8.
The cdc2 kinases are important cell cycle regulators in all eukaryotes. MAP kinases, a closely related family of protein kinases, are involved in cell cycle regulation in yeasts and vertebrates, but previously have not been documented in plants. We used PCR to amplify Brassica napus DNA sequences using primers corresponding to amino sequences that are common to all known protein kinases. One sequence was highly similar to KSS1, a MAP kinase from Saccharomyces cerevisiae. This sequence was used to isolate a full-length MAP kinase-like clone from a pea cDNA library. The pea clone, called D5, shared approximately 50% amino acid identity with MAP kinases from yeasts and vertebrates and about 41% identity with plant cdc2 kinases. An expression protein encoded by D5 was recognized by an antiserum specific to human MAP kinases (ERKs). Messenger RNA corresponding to D5 was present at similar levels in all tissues examined, without regard to whether cell division or elongation were occurring in those tissues.  相似文献   

9.
10.
Huang Y  Li H  Gupta R  Morris PC  Luan S  Kieber JJ 《Plant physiology》2000,122(4):1301-1310
The modulation of mitogen-activated protein kinase (MAPK) activity regulates many intracellular signaling processes. In animal and yeast cells, MAP kinases are activated via phosphorylation by the dual-specificity kinase MEK (MAP kinase kinase). Several plant homologs of MEK and MAPK have been identified, but the biochemical events underlying the activation of plant MAPKs remain unknown. We describe the in vitro activation of an Arabidopsis homolog of MAP kinase, ATMPK4. ATMPK4 was phosphorylated in vitro by an Arabidopsis MEK homolog, AtMEK1. This phosphorylation occurred principally on threonine (Thr) residues and resulted in elevated ATMPK4 kinase activity. A second Arabidopsis MEK isoform, ATMAP2Kalpha, failed to phosphorylate ATMPK4 in vitro. Tyr dephosphorylation by the Arabidopsis Tyr-specific phosphatase AtPTP1 resulted in an almost complete loss of ATMPK4 activity. Immunoprecipitates of Arabidopsis extracts with anti-ATMPK4 antibodies displayed myelin basic protein kinase activity that was sensitive to treatment with AtPTP1. These results demonstrate that a plant MEK can phosphorylate and activate MAPK, and that Tyr phosphorylation is critical for the catalytic activity of MAPK in plants. Surprisingly, in contrast to the animal enzymes, AtMEK1 may not be a dual-specificity kinase but, rather, the required Tyr phosphorylation on ATMPK4 may result from autophosphorylation.  相似文献   

11.
Mitogen-activated protein kinase (MAP kinase, MAPK) cascades play pivotal roles in signal transduction of extracellular stimuli, such as environmental stresses and growth regulators, in various organisms. Arabidopsis thaliana MAP kinases constitute a gene family, but stimulatory signals for each MAP kinase have not been elucidated. Here we show that environmental stresses such as low temperature, low humidity, hyper-osmolarity, touch and wounding induce rapid and transient activation of the Arabidopsis MAP kinases ATMPK4 and ATMPK6. Activation of ATMPK4 and ATMPK6 was associated with tyrosine phosphorylation but not with the amounts of mRNA or protein. Kinetics during activation differ between these two MAP kinases. These results suggest that ATMPK4 and ATMPK6 are involved in distinct signal transduction pathways responding to these environmental stresses.  相似文献   

12.
AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.Abbreviations MBP maltose binding protein - PCR polymerase chain reaction - Stress70c the cytosolic member of the 70 kDA family of stress-related proteins  相似文献   

13.
A poplar DHDPS cDNA clone has been isolated by functional rescue of thedapA-deficient AT997 mutant ofEscherichia coli. By sequence comparison between the poplar and maize DHDPS cDNAs, two oligonucleotides were designed to perform polymerase chain reaction (PCR) onArabidopsis thaliana genomic DNA. The PCR fragment was subsequently used to isolate anArabidopsis DHDPS genomic and cDNA clone.  相似文献   

14.
To better understand gene expression at very low levels, we have designed a method to eliminate cDNA clones representing abundant mRNAs. A cDNA library for drought-stressed hot pepper (Capsicum annuum) (Choi et al., 2002) underwent double-negative screening, once with probes made from a drought-stressed plant, the second time, with probes from a non-stressed plant. The cDNA clones that showed very weak or negative signals were isolated for further analysis, which resulted in 1399 cDNA clones from about 20,000 screened clones. When nucleotide sequences were determined, we obtained 1142 tentative unique genes, with a redundancy rate of 20.41%. An homology database search for the deduced amino acid sequences revealed that about 79% of the cDNA clones could not be matched for functioning with previously characterized sequences. However, when these uncategorized clones were subjected to classification based on functional domains, most could be cited. Notably, clones with possible functions in RNA transport, protein synthesis, and regulation of protein activity showed a dramatic increase in appearance while those coding for transposable elements, viral proteins, and plasmid proteins occupied a much smaller portion compared with those in theArabidopsis thaliana genome. In addition, those coding for proteins targeted to the endoplasmic reticulum were dramatically more abundant in our clones compared with theArabidopsis database.  相似文献   

15.
16.
Thellungiella salsuginea (also known as T. halophila) is a close relative of Arabidopsis that is very tolerant of drought, freezing, and salinity and may be an appropriate model to identify the molecular mechanisms underlying abiotic stress tolerance in plants. We produced 6578 ESTs, which represented 3628 unique genes (unigenes), from cDNA libraries of cold-, drought-, and salinity-stressed plants from the Yukon ecotype of Thellungiella. Among the unigenes, 94.1% encoded products that were most similar in amino acid sequence to Arabidopsis and 1.5% had no match with a member of the family Brassicaceae. Unigenes from the cold library were more similar to Arabidopsis sequences than either drought- or salinity-induced sequences, indicating that latter responses may be more divergent between Thellungiella and Arabidopsis. Analysis of gene ontology using the best matched Arabidopsis locus showed that the Thellungiella unigenes represented all biological processes and all cellular components, with the highest number of sequences attributed to the chloroplast and mitochondria. Only 140 of the unigenes were found in all three abiotic stress cDNA libraries. Of these common unigenes, 70% have no known function, which demonstrates that Thellungiella can be a rich resource of genetic information about environmental responses. Some of the ESTs in this collection have low sequence similarity with those in Genbank suggesting that they may encode functions that may contribute to Thellungiella’s high degree of stress tolerance when compared with Arabidopsis. Moreover, Thellungiella is a closer relative of agriculturally important Brassica spp. than Arabidopsis, which may prove valuable in transferring information to crop improvement programs.  相似文献   

17.
Mitogen-activated protein (MAP) kinases cascades mediate cellular responses to a great variety of different extracellular signals in plants. Activation of a MAP kinase occurs after phosphorylation by an upstream dual-specificity protein kinase, known as a MAP kinase kinase. However, only a few of the MAPK kinases in Arabidopsis have been investigated. An active AtMKK3, 35S:AtMPK1, 35S:AtMPK2, and 35S:AtMPK3 constructs were built and their transformed plants were generated. The kinase activity of AtMPK1 or AtMPK2 was stimulated by active AtMKK3 in transient analysis of tobacco leaves. Coimmunoprecipitation experiments indicated interaction between AtMKK3 and AtMPK1 or AtMPK2 in the coexpressed tissues of AtMKK3 and AtMPK1 or AtMKK3 and AtMPK2. RT-PCR analysis showed that AtMKK3 and AtMPK1, or AtMKK3 and AtMPK2 were co-expressed in diverse plant tissues. Plants overexpressing AtMKK3 exhibited an enhanced tolerance to salt and were more sensitive to ABA. Plants overexpressing AtMPK1 or AtMPK2 were also more sensitive to ABA. AtMPK1 or AtMPK2 can be activated by cold, salt, and ABA. AtMKK3, AtMPK1, and AtMPK2 genes were induced by ABA or stress treatments. All these data indicated that the ABA signal transmitted to a MAPK kinase signaling cascade and could be amplified through MAP kinase1 or MAP kinase2 for increasing salt stress tolerance in Arabidopsis.  相似文献   

18.
The radish Rfo gene restores male fertility in radish or rapeseed plants carrying Ogura cytoplasmic male-sterility. This system was first discovered in radish and was transferred to rapeseed for the production of F1 hybrid seeds. We aimed to identify the region of the Arabidopsis genome syntenic to the Rfo locus and to characterize the radish introgression in restored rapeseed. We used two methods: amplified consensus genetic markers (ACGMs) in restored rapeseed plants and construction of a precise genetic map around the Rfo gene in a segregating radish population. The use of ACGMs made it possible to detect radish orthologs of Arabidopsis genes in the restored rapeseed genome. We identified radish genes, linked to Rfo in rapeseed and whose orthologs in Arabidopsis are carried by chromosomes 1, 4 and 5. This indicates several breaks in colinearity between radish and Arabidopsis genomes in this region. We determined the positions of markers relative to each other and to the Rfo gene, using the progeny of a rapeseed plant with unstable meiotic transmission of the radish introgression. This enabled us to produce a schematic diagram of the radish introgression in rapeseed. Markers which could be mapped both on radish and restored rapeseed indicate that at least 50 cM of the radish genome is integrated in restored rapeseed. Using markers closely linked to the Rfo gene in rapeseed and radish, we identified a contig spanning six bacterial artificial chromosome (BAC) clones on Arabidopsis chromosome 1, which is likely to carry the orthologous Rfo gene.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by H. C. BeckerS. Giancola and S. Marhadour contributed equally to this work  相似文献   

19.
20.
Previous analysis of the MAP kinase homologue from Pisum sativum (PsMAPK) revealed a potential MAP kinase motif homologous to that found in eukaryotic cdc2 kinases. Sequence comparison showed a 47% identity on amino acid sequence basis to the Saccharomyces cerevisiae Hog 1p MAP kinase involved in the osmoregulatory pathway. Under conditions of salt-stress aberrant morphology of a hog1 deletion mutant was completely restored and growth was partially restored by expression of the PsMAPK. This shows that PsMAPK is functionally active as a MAP kinase in S. cerevisiae. Comparison of PsMAPK with other kinases involved in osmosensitivity, showed a high degree of homology and implicates a possible role for PsMAPK in a P. sativum osmosensing signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号