首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nucleotide binding site in actin was occupied with the fluorescent analogue formycin A 5' triphosphate which acted as a fluorescent donor for the acceptor chromophore dansyl chloride attached to Tyr-69. The distance separating the two chromophores was calculated to be 2.1 nm from the fluorescence energy transfer measurements. Similar measurements were made of the distances separating dansyl chloride, acting as donor, on Tyr-69 from Co2+ occupying the metal binding site. A distance of 2.1 nm was similarly obtained.  相似文献   

2.
Mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH; EC 1.6.1.1) was inactivated by treatment with pyridoxal phosphate, ethoxyformic anhydride (EFA) or dansyl chloride. NADP and NADPH, but not NAD and NADH, protected TH against inhibition by pyridoxal phosphate, and L-lysine reversed this inhibition. The results suggested modification of an essential lysyl residue by pyridoxal phosphate, possibly at the NADP(H) binding site of TH. EFA and dansyl chloride inhibited TH in a similar manner. The effect of pH on the rate of inhibition of TH by EFA and dansyl chloride was the same, and in both cases addition of NADP and particularly NADPH accelerated the rate of inhibition, while addition of NAD or NADH had no effect. Double inhibition studies, using in one experiment dithiothreitol-reversible inhibition by 5,5'-dithiobis(2-nitrobenzoic acid) to protect the thiol groups of TH, and in another experiment lysine-reversible inhibition by pyridoxal phosphate to protect the putative essential lysyl residues of the enzyme, followed in each case by further treatment of the protected TH with EFA or dansyl chloride, suggested that the inhibitions by EFA and dansyl chloride were independent of the inhibitions by 5,5'-dithiobis (2-nitrobenzoic acid) and pyridoxal phosphate. The inhibitors discussed above are interesting, because pyridoxal phosphate is the only reagent known which appears to modify an essential residue in the NADP(H), but not the NAD(H), binding site of TH, and EFA and dansyl chloride are the only inhibitors known which appear to react with essential residues outside the active site of TH. It is possible that EFA and dansyl chloride inhibitions involve modification of essential prototropic residues in the proton translocation domain of the enzyme.  相似文献   

3.
Dansyl chloride, at low molar ratio, inactivates ferredoxin-NADP reductase (NADPH:ferredoxin oxidoreductase, EC 1.6.7.1). The complete protection afforded either by NADP or NADPH suggests a direct involvement of the active site. Experiments with [Me-14C] dansyl chloride showed that about 1.5 residues per flavin were dansylated: by differential labelling experiments using NADP, it has been proved that enzyme inactivation is due to dansylation of one residue. The group modified has been identified as the epsilon-amino group of a lysine. The pH-inactivation profile indicates that this essential group has an apparent pKa of 8.7. The dansylated flavoprotein seems to maintain its native conformation; it shows a fluorescent chromophore with a peak at 335 nm. The modified enzyme has lost the capacity to form a complex with NADP, nevertheless it interacts normally with ferredoxin. It is concluded that the loss of catalytic activity which parallels the dansylation of a lysyl residue occurs because this residue is essential for the binding of the pyridine nucleotide substrate. Protection experiments with a series of coenzyme analogs further indicate that this lysyl residue interacts, most likely, with the 2'-phosphate moiety of NADP(H).  相似文献   

4.
The role of histidine residues of glutathione reductase from rabbit liver was investigated by chemical modification with both ethoxyformic anhydride and dansyl chloride. At least four histidine residues were concomitantly modified by ethoxyformic anhydride at pH 6; both the GSSG reductase and the transhydrogenase activities were inhibited to the same extent. Dansyl chloride inactivated the enzyme showing pH-independence in the range 7-9. About 2.6 moles dansyl were incorporated in the protein 80% inactivated at pH 8, whereas at pH 7 a lower amount of labelling was found. Nearly complete reactivation of the inactivated enzyme could be obtained by incubation with hydroxylamine, which released all the acid-labile bound dansyl. Of the two histidine residues modified, only the slower reacting residue seems essential for activity. The modification with dansyl chloride will allow the identification of the histidine residues modified, in the sequence of the protein.  相似文献   

5.
An ad hoc bioconjugation/fluorescence resonance energy transfer (FRET) assay has been designed to spectroscopically monitor the quaternary state of human thymidylate synthase dimeric protein. The approach enables the chemoselective engineering of allosteric residues while preserving the native protein functions through reversible masking of residues within the catalytic site, and is therefore suitable for activity/oligomerization dual assay screenings. It is applied to tag the two subunits of human thymidylate synthase at cysteines 43 and 43′ with an excitation energy donor/acceptor pair. The dimer–monomer equilibrium of the enzyme is then characterized through steady‐state fluorescence determination of the intersubunit resonance energy transfer efficiency.  相似文献   

6.
J M Bailey  R F Colman 《Biochemistry》1987,26(15):4893-4900
When the substrate isocitrate-Mn2+ is present, the fluorescent nucleotide analogue 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) reacts irreversibly with pig heart NADP+-specific isocitrate dehydrogenase at the coenzyme binding site on one subunit of the dimeric enzyme [Bailey, J. M., & Colman, R. F. (1985) Biochemistry 24, 5367-5377]. The modified enzyme, which retains partial activity, binds 1 mol of NADPH or 1 mol of the coenzyme analogue, reduced thionicotinamide adenine dinucleotide phosphate (TNADPH), per dimer. TNADPH quenches the fluorescence of enzyme-bound 2-BDB-T epsilon A-2',5'-DP with an efficiency of energy transfer of 9.8%. From this value and the spectral properties of the donor and acceptor chromophores, a distance of 32 A was calculated as the average distance between coenzyme sites on the two subunits. Isocitrate dehydrogenase activity requires a divalent metal ion, such as Mn2+, Co2+, or Ni2+. Co2+ and Ni2+ have absorption spectra that overlap the emission spectra of enzyme-bound 2-BDB-T epsilon A-2',5'-DP. In the presence of isocitrate, each of these two metal ions quenches the fluorescence of the enzyme-bound reagent with an efficiency of energy transfer of 28-29%. From this value and the spectral characteristics of the energy donor and acceptors, an average distance of 8.0 A was estimated between the metal-isocitrate site and the labeled coenzyme site. These distances have provided constraints in formulating a model of the spatial arrangement of active-site ligands on isocitrate dehydrogenase.  相似文献   

7.
The distance between the phospholipid surface and the active site of membrane-bound meizothrombin, a derivative of prothrombin, was determined directly using fluorescence energy transfer. The active site of prothrombin was exposed after a single cleavage by Echis carinatus protease in the presence of [5-(dimethylamino)-1-naphthalenesulfonyl]glutamylglycylarginyl+ ++ (DEGR) chloromethyl ketone to yield DEGR-meizothrombin and thereby minimize secondary proteolysis. When DEGR-meizothrombin was titrated with 80% phosphatidylcholine, 20% phosphatidylserine vesicles containing octadecylrhodamine, singlet-singlet energy transfer was observed between the donor dyes in the active sites of the membrane-bound proteins and the acceptor dyes at the outer surface of the phospholipid bilayer. This energy transfer required both Ca2+ and phosphatidylserine. Assuming k2 = 2/3, the dependence of the efficiency of energy transfer upon the acceptor density showed that the distance of closest approach between the active site probe and the bilayer surface was 71 +/- 2 A. In the presence of factor Va, the distance was 67 +/- 3 A. These direct measurements show that the active site of meizothrombin is located far above the membrane surface. Also, association of factor Va with meizothrombin on the phospholipid surface appears to cause a slight movement of the meizothrombin protease domain toward the membrane surface. The environment of the dansyl dye covalently attached to the active site of meizothrombin was particularly sensitive to the presence of calcium: addition of Ca2+ ions to metal-free DEGR-meizothrombin reduced the dansyl fluorescence lifetime from 11.7 to 9.0 ns and the dansyl emission intensity by 24%. Hence, the conformation of the active site changed when Ca2+ ions bound to meizothrombin. Since the intensity change was half-maximal at 0.2 mM and was also elicited by the binding of Mg2+ ions, this spectral change correlates with the calcium-dependent conformational change previously observed in fragment 1. We conclude, therefore, that the binding of Ca2+ ions to meizothrombin and, by extension, perhaps to prothrombin, elicits a conformational change that extends beyond the fragment 1 domains into the distant (cf. above) active site or protease domain. The association of factor Va with membrane-bound DEGR-meizothrombin increased both the dansyl emission intensity (by 7%) and polarization. This intensity change and the factor-Va dependent change in energy transfer indicate that the cofactor of the prothrombinase complex functions to modulate the conformation and orientation of both the substrate and the enzyme of the complex.  相似文献   

8.
5-Aminolevulinate dehydratase from bovine liver requires Zn(II) for its activity and is inhibited by micromolecular concentrations of Pb(II). To elucidate the structure of the active site and its interactions between the active site and the metal binding site we labeled the active site for fluorescence studies and ESR spectroscopy. o-Phthalaldehyde reacted with active site lysyl and cysteinyl residues to form a fluorescent isoindole derivative. The fluorescence energy was independent of the deprivation of Zn(II) and of its substitution by the inhibitory Pb(II). For ESR-studies five iodoacetamide and four isothiocyanate pyrrolidine-N-oxyl derivatives with various spacer lengths were used to label the active site cysteinyl and lysyl residues, respectively. The ESR spectra of the modified enzyme preparations exhibited a significant immobilization of all labels, even with the longest spacers employed. Obviously the reactive cysteine is buried more than 12 A, and the active site lysine more than 11 A in a cleft of the enzyme structure. Zn(II) deprivation from the iodoacetamide spin-labeled enzyme caused a marked reversible increase in label mobility, whereas the Pb(II) substituted enzyme exhibited a smaller mobilization of the label. These results are interpreted by a model of the active site where the reactive cysteinyl and the lysyl side groups are close enough to be crosslinked by o-phthalaldehyde within a distance of 3 A. A structural role is assigned to Zn(II) in the enzyme, since Zn(II) deprivation does not alter the fluorescence of the isoindole derivative and increases the mobility of the cysteine-bound spin labels in the active site cleft.  相似文献   

9.
The redistribution of platelet membrane proteins in response to platelet activation was studied. To investigate this process we prepared a variety of platelet ligands, including di- and tetrameric concanavalin A, IgG, thrombin, wheat-germ agglutinin and other lectins. These ligands were conjugated either with acceptor (rhodamine isothiocyanate) or donor (fluoresceine isothiocyanate) fluorophore. Platelets exposed to various combinations of ligand species were stimulated with different aggregating agents, and changes in sensitized fluorescence emission or donor quenching were recorded. Energy transfer was observed with thrombin, dimeric concanavalin A after addition of thrombin and various combinations of dimeric concanavalin A with other membrane ligands. The preincubation of platelets with colchicine prevented energy transfer between appropriate ligand pairs and platelet activator. Our studies show that nonradiative energy transfer can be used to analyze redistribution of membrane receptor sites in platelets.  相似文献   

10.
The redistribution of platelet membrane proteins in response to platelet activation was studied. To investigate this process we prepared a variety of platelet ligands, including di- and tetrameric concanavalin A, IgG, thrombin, wheat-germ agglutinin and other lectins. These ligands were conjugated either with acceptor (rhodamine isothiocyanate) or donor (fluoresceine isothiocyanate) fluorophore. Platelets exposed to various combinations of ligand species were stimulated with different aggregating agents, and changes in sensitized fluorescence emission or donor quenching were recorded. Energy transfer was observed with thrombin, dimeric concanavalin A after addition of thrombin and various combinations of dimeric concanavalin A with other membrane ligands. The preincubation of platelets with colchicine prevented energy transfer between appropriate ligand pairs and platelet activator. Our studies show that nonradiative energy transfer can be used to analyze redistribution of membrane receptor sites in platelets.  相似文献   

11.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have used resonance energy transfer to monitor epidermal growth factor (EGF) receptor micro-aggregation at the surface of intact human epidermoid carcinoma (A431) cells. EGF molecules labeled with fluorescein isothiocyanate and eosin isothiocyanate were demonstrated to bind tightly to cellsurface receptors, to elicit immediate changes in cytosolic free [Ca2+], and to undergo endocytosis. Under conditions which maintain the integrity of the cell, we observed no energy transfer between the donor fluorescein isothiocyanate-labeled EGF molecules and the acceptor eosin isothiocyanate-labeled growth factors bound to receptors. However, after disruption of cells by Dounce homogenization, a significant degree of energy transfer was observed (approximately 10-20%) with membranes, indicative of receptor aggregation. These results suggest that EGF does not cause micro-aggregation of the majority of its receptors on the surface of intact A431 cells within the time period of the early events associated with growth factor action. Moreover, it appears that the A431 cells contain some component which imparts a constraint on the ability of EGF receptors to aggregate, and that some of this component is lost upon the disruption of cells.  相似文献   

13.
Structural organization of chloroplast coupling factor   总被引:2,自引:0,他引:2  
B Snyder  G G Hammes 《Biochemistry》1985,24(9):2324-2331
Fluorescence resonance energy transfer measurements have been used to construct spatial maps for the accessible sulfhydryl of the gamma subunit (dark site) and the essential tyrosine residue of the beta subunits relative to previously mapped sites on the H+-ATPase from chloroplasts. The extent of energy transfer was measured between a coumarinylmaleimide derivative reacted covalently at the dark site and acceptor species selectively bound at the gamma-disulfide and the three nucleotide binding sites of the solubilized coupling factor complex. The nucleotide energy acceptor was 2'(3')-(trinitrophenyl)adenosine triphosphate, and the gamma-disulfide site was labeled with fluoresceinylmaleimide. The dark-site sulfhydryl also was labeled with pyrenylmaleimide which served as an energy donor for 7-chloro-4-nitro-2,1,3-benzoxadiazole reacted at the beta-tyrosine sites. Similar measurements were also made with pyrenylmaleimide covalently attached to the gamma-sulfhydryl accessible only under energized conditions on the thylakoid membrane surface (light site). The observed transfer efficiencies indicate that the dark-site sulfhydryl is approximately 45 A from all three nucleotide sites and 41-46 A from the gamma-disulfide site. The average distances separating the essential beta-tyrosines and the light- and dark-site sulfhydryls are 38 and 42 A, respectively. (In calculating these distances, random orientation of the donor-acceptor dipoles was assumed.) The results are consistent with a previously described structural model of the intact enzyme and can be used to gain insight into the overall structural organization or alpha-, beta-, and gamma-polypeptides within the coupling factor.  相似文献   

14.
Measurements of the efficiency of singlet-singlet energy transfer were used to determine the distance between the hydrophobic binding site and the thiol group required for carbohydrate-binding activity of lima bean lectin. 1-Anilino-8-naphthalenesulfonate, bound to the hydrophobic binding site by noncovalent interactions, was used as the donor. Two different nonfluorescent probes were used as the acceptors: a mercurial, 2-chloromercuri-4-nitrophenol, and a maleimide, 4-dimethylaminophenylazophenyl-4'-maleimide. Acceptor was covalently attached to the thiol group at the putative carbohydrate binding site. The efficiency of energy transfer in both the 1-anilino-8-naphthalenesulfonate/2-chloromercuri-4-nitrophenol and and 1-anilino-8-naphthalenesulfonate/4-dimethylaminophenylazophenyl-4' -maleimide donor-acceptor systems indicated an apparent distance of 28 A between the two sites, assuming that the transition dipole of the donor is not correlated with respect to that of the acceptor and that each donor is quenched by a single acceptor. Using an alternate model wherein each donor is equally quenched by two acceptors on adjacent subunits, an apparent distance of 33.4 A was calculated. The fact that two donor-acceptor pairs with different F?rster's critical distance parameters yielded the same distance between the sites is consistent with our assumption of uncorrelated donor-acceptor transition dipoles.  相似文献   

15.
By use of the intermediate form (I-form) [Gettins, Crews, & Cunningham (1989) Biochemistry 28, 5613-5618], alpha 2-macroglobulin can be specifically labeled with fluorescent probes in a manner that allows the determination of the topology of the four thiol ester derived Cys949 residues within this large tetrameric protease inhibitor. Freshly prepared I-form alpha 2-macroglobulin was reacted with 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonate (1,5-I-AEDANS) to produce alpha 2-macroglobulin specifically and stoichiometrically labeled with 1,5-AEDANS (donor) at the two Cys949 SH groups in the first protease interaction site. Upon subsequent reaction of this labeled species with chymotrypsin, the remaining two bait regions and thiol ester linkages were opened, generating two free SH groups on the two Cys949 residues in the second protease interaction site. These SH groups were specifically and stiochiometrically labeled with 5-(iodoacetamido)fluorescein (acceptor). Fluorescence energy transfer from donor to acceptor results in 82% loss of AEDANS fluorescence intensity. By use of an R0(2/3) value of 43.5 A, calculated from the spectral parameters of this system, an R(2/3) separation between donor and acceptor of 33.9 A was calculated. From fluorescence anisotropy measurements of both donor and acceptor attached to alpha 2-macroglobulin, upper and lower limits on the separation of 43.4 and 26.1 A, respectively, were calculated. These separations, small in the context of the alpha 2-macroglobulin tetramer, which has approximate dimensions of 190 x 90 x 90 A, severely restrict the possible locations of the four Cys949 residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Detection of actin assembly by fluorescence energy transfer   总被引:18,自引:10,他引:8       下载免费PDF全文
Fluorescence energy transfer was used to measure the assembly and disassembly of actin filaments. Actin was labeled at cysteine 373 with an energy donor (5-iodoacetamidofluorescein) or an energy acceptor (tetramethylrhodamine iodoacetamide or eosin iodoacetamide). Donor- labeled actin and acceptor-labeled actin were coassembled. The dependence of the transfer efficiency on the mole fraction of acceptor- labeled actin showed that the radial coordinate of the label at cysteine 373 is approximately 35 A, which means that this site is located near the outer surface of the filament. The distance between a donor and the closest acceptor in such a filament is 58 A. The increase in fluorescence after the mixing of actin filaments containing both donor and acceptor with unlabeled filaments showed that there is a slow continuous exchange of actin units. The rate of exchange was markedly accelerated when the filaments were sonicated. The rapid loss of energy transfer caused by mechanical shear probably resulted from an increase in the number of filament ends, which in turn accelerated the exchange of monomeric actin units. Energy transfer promises to be a valuable tool in characterizing the assembly and dynamics of actin and other cytoskeletal and contractile proteins in vitro and in intact cells.  相似文献   

17.
Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic activation parameters for the spontaneous transfer of bilirubin between small unilamellar egg lecithin vesicles were determined. Bilirubin-IX alpha was added to donor vesicles labeled with the fluorescent phospholipid probe, (5-(dimethylamino)naphthalene-1-sulfonyl) dipalmitoyl-L-alpha-phosphatidylethanolamine (dansyl-PE). When bound to the donor vesicles, bilirubin quenches the dansyl probe fluorescence through resonance energy transfer. The movement of bilirubin from dansyl-labeled donor vesicles to unlabeled acceptor vesicles was monitored directly by the reemergence of dansyl fluorescence over time. Vesicle fusion and intervesicle transfer of the dansyl-PE probe were excluded by quasielastic light scattering and fluorescence resonance energy transfer studies. Stopped-flow analysis demonstrated that the transfer of bilirubin was described by a single-exponential function with a mean half-time of 2.0 +/- 0.1 ms (+/- SD) at 37 degrees C. The rate of bilirubin transfer was independent of acceptor vesicle concentration and decreased with increasing buffer ionic strength, indicating that intermembrane transfer occurred via aqueous diffusion, rather than vesicle collisions. The free energy of activation (delta G++) for the dissociation of bilirubin from donor vesicles was 14.2 kcal.mol-1. These studies suggest that bilirubin is associated with phospholipid bilayers at the membrane-water interface. We postulate that the movement of unconjugated bilirubin between intracellular membranes occurs via spontaneous transfer through the aqueous phase.  相似文献   

18.
R F Steiner  S Albaugh 《Biopolymers》1990,29(6-7):1005-1014
The interaction of cyclosporin A and dansyl cyclosporin A with bovine and wheat germ calmodulin has been monitored by measurements of induced changes in dansyl and bound toluidinyl naphthalene sulfonate fluorescence. The interaction is Ca2(+)-dependent and 1:1. Measurements of the efficiency of radiationless energy transfer from bound dansyl cyclosporin A to an acceptor group located on Cys-27 of wheat germ calmodulin suggest that the primary binding site is not located on the N-terminal lobe (residues 1-65). However, studies with proteolytic fragments of calmodulin indicate that elements of the N-terminal half-molecule (residues 1-77) may be involved in the stabilization of the binding site. The binding of cyclosporin alters the physical properties of calmodulin and, in particular, reduces the localized rotational mobility of a fluorescent probe.  相似文献   

19.
The subunit structure of rat liver pyruvate kinase   总被引:1,自引:0,他引:1  
The amino acid composition for rat liver pyruvate kinase is reported. Thin layer peptide mapping of the tryptic digests yields 44 ninhydrin-reactive peptides, which is one-quarter the total number of lysyl and arginyl residues. No amino-terminal residue has been detected using the dansyl chloride procedure. Acid urea disc gel electrophoresis of the protein subunits yields only one protein band; yet, isoelectric focusing of the subunits in urea yields two protein bands. These results suggest that pyruvate kinase (L-type isozyme) consists of four subunits of similar primary structure, but with sufficient microheterogeniety to be able to resolve two types of subunits upon isoelectric focusing.  相似文献   

20.
Fluorescence resonance energy transfer between epidermal growth factor (EGF) molecules, labeled with fluorescent reporter groups, was used as a monitor for EGF receptor-receptor interactions in plasma membranes isolated from human epidermoid A431 cells. Epidermal growth factor molecules labeled at the amino terminus with fluorescein isothiocyanate served as donor molecules in these energy transfer measurements, while EGF molecules labeled with eosin isothiocyanate at the amino terminus served as the energy acceptors. Both of these derivatives were shown to be active in binding to membrane receptors and in the activation of the endogenous receptor/tyrosine kinase activity. We found that membranes in the absence of added metal ion activators showed relatively little energy transfer (approximately 10% donor quenching) between the labeled growth factors. However, divalent metal ion activators of the EGF receptor/tyrosine kinase caused a significant increase in the extent of energy transfer between the labeled EGF molecules. Specifically, in the presence of 20 mM MgCl2, the extent of quenching of the donor fluorescence increased to 25% (from 10% in the absence of metal), while in the presence of 4 mM MnCl2, the extent of energy transfer was increased still further to 40-50%. The addition of an excess of EDTA resulted in the reversal of the observed energy transfer to basal levels. The increased energy transfer in the presence of these divalent cations correlated well with the ability of these metals to stimulate the EGF receptor/tyrosine kinase activity. However, the extent of receptor-receptor interactions measured by energy transfer was independent of receptor autophosphorylation. Overall, these results suggest that conditions under which the EGF receptor is primed to be active as a tyrosine kinase, within a lipid milieu, result in an increased aggregation of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号